8.022 (E\&M) - Lecture 18

Topics:

- RCL circuits: the hardest of the easiest part of the course?
- More on complex impedance
- Power and energy
- Filters

Last time: AC driven RCLs

Simple solution when introducing following rules:

- Work with complex V and I
- Real currents and voltages are just the real part of the \tilde{V} and I.
- Generalization of Ohm's law to complex V and I:

$$
\tilde{V}(t)=\tilde{I}(t) Z_{x}
$$

where Z_{x} is the impedance of component $X:\left\{\begin{array}{l}Z_{C}=\frac{1}{i \omega C}\end{array}\right.$

- Analyze circuit as if it were DC with only resistors

$$
Z_{L}=i \omega L
$$

- Take the real part of $I(t)$ and $V(t)$
- The End.

"Analyze as DC with only resistors"

What do I mean with this statement?

- Impedances in series
- Same current flowing in each element
$\mathrm{I}_{1} \mathrm{Z}_{1}=\mathrm{V}_{1} ; \mathrm{I}_{2} \mathrm{Z}_{2}=\mathrm{V}_{2} ; \mathrm{V}_{1}+\mathrm{V}_{2}=\mathrm{V} ; \mathrm{V}=\mathrm{ZI}$

$\rightarrow Z_{\text {eq }}=Z_{1}+Z_{2}$
- Impedances in parallel
- Same voltage drop across each element
- $\mathrm{V}_{1} / \mathrm{Z}_{1}=\mathrm{V}_{2} / \mathrm{Z}_{2}=\mathrm{V} /$ Zeq; $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}$
$\rightarrow 1 / Z_{\text {eq }}=1 / Z_{1}+1 / Z_{2}$

\rightarrow Same rules as resistors in series and parallel!

Is the current leading or lagging?

Instead of thinking of the problems in terms of complex currents, think in terms of complex impedance!

- Generalized Ohm's law: $\tilde{V}(t)=\tilde{I}(t) Z_{c}$
- All what we really care about is amplitude of I and relative phase between I and V
- Trick: let’s choose V real (no law against it!) and draw the complex I, V and Z in the complex plane

8.022 - Lecture 17

Is current leading or lagging? (2)

> Consider the complex impedance:
> - Real part: only R contributes
> - Imaginary part: Z_{L} "pulls up" by ωL and Z_{C} pulls down by $1 / \omega C$

Is current leading or lagging? (3)

Now remember that $\tilde{V}(t)=\tilde{I}(t) \tilde{Z}_{c} \quad$ and that we chose a real V :

$$
\begin{aligned}
\tilde{I}(t)=\frac{V(t)}{\tilde{z}_{c}}=\frac{V(t)}{\left|\tilde{z}_{c}\right|} e^{-i \phi_{z}} \Rightarrow & \begin{array}{l}
\text { if } \phi_{\mathrm{Z}}>0, \text { I will be lagging } \mathrm{V} \\
\text { if } \phi_{\mathrm{Z}}<0, \text { I will be leading } \mathrm{V}
\end{array}
\end{aligned}
$$

Power in RCL circuits

- Power delivered in a circuit is

$$
P(t)=V(t) /(t)
$$

- Given $\left\{\begin{array}{l}V(t)=V_{0} \cos \omega t \\ I(t)=I_{0} \cos (\omega t-\phi)\end{array}\right.$
- The average power over a period T will be

$$
\begin{aligned}
& \langle P\rangle=\frac{1}{T} \int_{T} V(t) /(t) d t=\frac{\omega}{2 \pi} \int_{T} V_{0} \cos \omega t I_{0} \cos (\omega t-\phi) d t= \\
& =\frac{\omega}{2 \pi} \frac{V_{0}^{2}}{|Z|_{T}} \cos \omega t \cos (\omega t-\phi) d t
\end{aligned}
$$

- NB: when we say light bulb has a P of 100W we are referring to <P>
- Using the identity: $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$ we obtain:

$$
\langle P\rangle=\frac{\omega}{2 \pi} \frac{V_{0}^{2}}{|Z|}\left[\int_{0}^{\frac{\omega}{2 \pi}} \cos \omega t \cos \omega t \cos \phi d t+\int_{0}^{\frac{\omega}{2 \pi}} \cos \omega t \sin \omega t \sin \phi d t\right]_{7}
$$

Power in RCL circuits (2)

- Since:

$$
\left\{\begin{array}{l}
\frac{\omega}{2 \pi} \int_{0}^{\frac{\omega}{2 \pi}} \cos ^{2} \omega t d t=\frac{1}{2} \\
\frac{\omega}{2 \pi} \int_{0}^{\frac{\omega}{2 \pi}} \cos \omega t \sin \omega t d t=0
\end{array} \quad \Rightarrow \quad\langle P\rangle=\frac{1}{2} \frac{V_{0}{ }^{2}}{|Z(\omega)|} \cos \phi\right.
$$

- NB: Power depends on relative phase between I and V
- $\cos \phi=0 \rightarrow$ no power dissipated in the circuit \rightarrow no work done!
- $\cos \phi=0$ when $\phi=90^{\circ} \rightarrow$ when Z is purely imaginary: R needed!
- Introducing: RMS (root mean squared) voltage and currents:

$$
V_{R M S}=\frac{V_{0}}{\sqrt{2}} \text { and } I_{R M S}=\frac{I_{0}}{\sqrt{2}}
$$

- NB: in the US: outlet voltage is 120 V . This is the RMS voltage: $\mathrm{V}_{\max }=170$

$$
\rightarrow \quad\langle P\rangle=\frac{V_{R M S}{ }^{2}}{|Z(\omega)|} \cos \phi=R I_{R M S}(\omega)^{2} \text { remembering that } \cos \phi=\frac{R}{|Z(\omega)|}
$$

Power vs. frequency

NB: Z depends on $\omega \rightarrow$ power dissipated depends on driving frequency!
$\langle P\rangle=\frac{V_{\text {RMS }}{ }^{2}}{|Z(\omega)|^{2}} R=\frac{V_{\text {RMS }}{ }^{2}}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} R$

- At what ω is P is max?
- $\omega L-\frac{1}{\omega C}=0 \Rightarrow \omega=\frac{1}{\sqrt{L C}}=\omega_{0}$
- What ω is the max P?

- $\quad P_{\text {max }}=\frac{V_{R M S}{ }^{2}}{R}$
ω

What is the corresponding phase?

- Zero: the imaginary part due to C and L exactly cancel out!
G. Sciolla - MIT
8.022 - Lecture 17

ω_{0} in term of L and C

What does $\omega=\omega_{0}$ mean in terms of L and C ?

- Remember:

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \Leftrightarrow \omega L=\frac{1}{\omega C}
$$

- Back to the phasor representation for Z

The imaginary part due to C exactly compensates the one due to L \rightarrow Z is purely real!

How good is the resonant system?

- Definition: width of resonance wrt the height
- Width: $\Delta \omega$ between the points where the power goes to $\mathrm{P}_{\text {max }} / 2: \omega_{1}$ and ω_{2}
$\frac{V_{\text {RMS }}{ }^{2}}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} R=\frac{V_{\text {RMS }}{ }^{2}}{2 R} \Rightarrow\left|\omega L-\frac{1}{\omega C}\right|= \pm R$
$\left\{\begin{array}{l}\omega_{1} L-\frac{1}{\omega_{1} C}=-R \\ \omega_{2} L-\frac{1}{\omega_{2} C}=R\end{array} \Rightarrow\left\{\begin{array}{l}\omega_{1}{ }_{1} L C+R C \omega_{1}-1=0 \\ \omega_{2}{ }^{2} L C-R C \omega_{2}-1=0\end{array}\right.\right.$
$\left\{\begin{array}{l}\omega_{1}=\frac{-R C_{\ddagger} \sqrt{R^{2} C^{2}+4 L C}}{2 L C}= \\ \omega_{2}=\frac{R C_{ \pm} \sqrt{R^{2} C^{2}+4 L C}}{2 L C}\end{array} \Rightarrow \Delta \omega=\omega_{2}-\omega_{1}=\frac{R}{L} \Rightarrow Q=\frac{\omega_{\text {res }}}{\Delta \omega}=\frac{L \omega_{0}}{R}\right.$

Application: FM antenna

Consider the following circuit:

- $\mathrm{L}=8.22 \mu \mathrm{H}$
- $\mathrm{C}=0.27 \mathrm{pF}=0.27 \times 10^{-12} \mathrm{~F}$
- $\mathrm{R}=75 \Omega$

The radio signal in the air induces an alternated emf in the antenna:
$V_{\text {RMS }}=9.13 \mu \mathrm{~V}$

- Find frequency of incoming wave for which antenna is in tune

Resonance frequency: $\omega_{0}=\frac{1}{\sqrt{L C}}=6.7 \times 10^{8}$
$\omega_{0}=2 \pi \nu \Rightarrow v_{0}=\frac{\omega_{0}}{2 \pi}=106 \mathrm{MHz}$ YES, FM radio!

Application: FM antenna (cont)

- $\mathrm{L}=8.22 \mu \mathrm{H}$
- $\mathrm{C}=0.27 \mathrm{pF}=0.27 \times 10^{-12} \mathrm{~F}$
- $\mathrm{R}=75 \Omega$
- $\mathrm{V}_{\text {RMS }}=9.13 \mu \mathrm{~V}$
- Calculate $I_{\text {RMS }}$

$\mathrm{I}_{\text {RMS }}==\frac{\mathrm{I}_{0}}{\sqrt{2}}=\frac{V_{\text {RMS }}}{\left|Z_{0}\right|}=\frac{V_{\text {RMS }}}{R}\left(N B\right.$: at resonance $\left.\left|Z_{0}\right|=\mathrm{R}\right)$
- $\Delta \mathrm{V}_{\text {RMS }}$ across C
$\mathrm{V}_{\mathrm{C}}=I_{\text {RMS }} \mathrm{Z}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}} \frac{V_{\text {RMS }}}{R}=0.66 \mathrm{mV}$
Question: $\mathrm{V}_{\mathrm{C}}=0.66 \mathrm{mV}$ while $\mathrm{V}_{\text {RMS }}=9 \mu \mathrm{~V}$. How can this happen?
L and C cancel almost perfectly $\Rightarrow Z$ can be small while C and L
are large and $Z \sim$ real. NB: all circuits with good Q value have this feature!
G. Sciolla - MIT
8.022 - Lecture 17

Application: FM antenna (cont)

- Calculate width of resonance
$\Delta \omega=\frac{\mathrm{R}}{\mathrm{L}}=9 \cdot 10^{6} \Rightarrow \Delta v=\frac{\Delta \omega}{2 \pi}=1.4 \mathrm{MHz}$
Q : is this a good antenna?
No, since separation between stations is $\sim 0.2 \mathrm{MHz}$

- Q factor
$Q=\frac{\omega_{\text {res }}}{\Delta \omega}=\frac{L \omega_{0}}{R}=73$ good but not enough for a radio.
How can this be improved?
Can we increase L? No, it would change frequency
\Rightarrow decreasing R is the solution

Low pass RL filter

- RCL circuits have a frequency dependent response: they can act as filters (select only certain frequencies)
- Example: RL circuit
- Calculate the complex current

$$
\tilde{I}=\frac{\tilde{V}}{\tilde{Z}}=\frac{\tilde{V}}{R+i \omega L} \Rightarrow
$$

$$
V_{R}=|I| R=\frac{V_{0} R}{\sqrt{R^{2}+\omega^{2} L^{2}}}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\omega \rightarrow 0: V_{R} \rightarrow V_{0} \\
\omega \rightarrow \infty: V_{R} \rightarrow 0
\end{array} \Rightarrow\right. \text { low pass filter }
$$

$\Rightarrow\left\{\begin{array}{l}\omega \rightarrow 0: V_{R} \rightarrow V_{0} \\ \omega \rightarrow \infty: V_{R} \rightarrow 0\end{array} \Rightarrow\right.$ low pass filter

High pass RL filter

- What if we take the voltage V_{L} across the inductor?
- Same complex current

Low pass RC filter

- Let's now study the voltage across a capacitor of a driven RC circuit
- The complex current is now:
$\tilde{I}=\frac{\tilde{V}}{\tilde{Z}}=\frac{\tilde{V}}{R-\frac{i}{\omega C}} \Rightarrow$

$V_{C}=\frac{|I|}{\omega C}=\frac{\frac{V_{0}}{\omega C}}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}}=\frac{V_{0}}{\sqrt{\omega^{2} C^{2} R^{2}+1}} \Rightarrow\left\{\begin{array}{l}\omega \rightarrow 0: V_{R} \rightarrow V_{0} \\ \omega \rightarrow \infty: V_{R} \rightarrow 0\end{array} \Rightarrow\right.$ low pass filter

High pass RC filter

- What if we take the voltage V_{R} across the resistor?
- Same complex current

$V_{R}=R|/|=\frac{V_{0}}{\sqrt{R^{2}+\frac{1}{\omega^{2} C^{2}}}}=\frac{\omega C R V_{0}}{\sqrt{\omega^{2} C^{2} R^{2}+1}} \Rightarrow\left\{\begin{array}{l}\omega \rightarrow 0: V_{R} \rightarrow 0 \\ \omega \rightarrow \infty: V_{R} \rightarrow V_{0}\end{array} \Rightarrow\right.$ high pass filter

Summary and outlook

- Today:
- End of RCL circuits
- Some tricks to make RCL calculations easier
- Power dissipated in RCL circuits
- Antennas and high and low pass filters
- Next time:
- Back to Maxwell's equation:
- The missing ingredient!

