8.022 (E\&M) - Lecture 20

Topics:

- Electromagnetic plane waves and their properties
- Polarization of EM waves
- Polaroids and linear and circular polarization

Last time

- Completed Maxwell's equations
- Displacement currents
- Kirchoff's laws are legitimate!
- Solved Maxwell's equations in vacuum

$$
\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho \\
\vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
\end{array}\right.
$$

- Derived wave equation for EM waves
- They travel at speed of light: light is EM wave!
- Started studing properties of the general solution $f(x$-vt)
- Today we will complete the study of these properties...

Plane waves

- Fourier Theorem:
- Any periodic function can be expressed as a linear combination of sin and cos functions
\rightarrow sin and cos are the building blocks of all waves!
- Plane waves in the most general form:
- $\vec{E}=\vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t)=\vec{E}_{0} \sin \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)$
- $\vec{B}=\vec{B}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t)=\vec{B}_{0} \sin \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)$ where:
\vec{k} = wavevector; $|\vec{k}|=$ wavenumber; $\hat{k}=$ propagation direction

Plane waves vs $f(x-c t)$

- We proved that $f(x \pm c t)$ satisfies the wave equation
- How to connect ($x \pm c t$) to the the argument of plane waves ($\vec{k} \cdot \vec{r} \pm \omega t$) ?
- From 1D to 3D:

$$
f(x \pm c t) \Rightarrow f(\vec{r} \pm c \hat{k} t)
$$

- Relation between k, ω and c :

$$
\begin{array}{r}
\vec{k} \cdot \vec{r} \pm \omega t=\vec{k} \cdot\left(\vec{r} \pm \frac{\omega}{k} \hat{k} t\right)=\vec{k} \cdot(\vec{r} \pm c \hat{k} t) \\
\longleftrightarrow \omega \omega c k
\end{array}
$$

More on k and ω

- Choose a system of coordinates so that our wave vector k is oriented // to x axis: plane wave solution for E is

$$
\vec{E}=\vec{E}_{0} \sin \left(k_{x} x-\omega t\right)
$$

- Let's consider only the spatial variation of the wave (e.g. $t=0$):

$$
\vec{E}=\vec{E}_{0} \sin \left(k_{x} x\right)
$$

- $\lambda=$ wavelength

- Let's now consider the time variation of the wave (e.g. $x=0$):

$$
\vec{E}=\vec{E}_{0} \sin (\omega t)
$$

- Relations between variables:

$$
\omega=\frac{2 \pi}{T}=2 \pi v \quad \omega=c k \quad \lambda v=c
$$

Do plane wave satisfy Maxwell's equations?

- EM waves are a consequence of Maxwell's equations in the sense that we used the 4 Maxwell's Equations to derive the wave equations for E and B :

$$
\left\{\begin{array} { l }
{ \vec { \nabla } ^ { 2 } \vec { E } = \frac { 1 } { c ^ { 2 } } \frac { \partial ^ { 2 } \vec { E } } { \partial t ^ { 2 } } } \\
{ \vec { \nabla } ^ { 2 } \vec { B } = \frac { 1 } { c ^ { 2 } } \frac { \partial ^ { 2 } \vec { B } } { \partial t ^ { 2 } } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\vec{E}=\vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t) \\
\vec{B}=\vec{B}_{0} \sin (\vec{k} \bullet \vec{r}-\omega t)
\end{array}\right.\right.
$$

- Does the solution of the EM wave equation satisfy all Maxwell's Equations?
- Not necessarily! Let's start with Gauss's law: $\vec{\nabla} \cdot \vec{E}=0$
$\nabla \cdot \vec{E}=\nabla \cdot\left[\vec{E}_{0} \sin \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right]=$
$\left(\vec{E}_{0 x} k_{x}+\vec{E}_{0 y} k_{y}+\vec{E}_{0 z} k_{z}\right) \cos \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)=\vec{k} \cdot \vec{E}_{0} \cos (\vec{k} \cdot \vec{r}-\omega t)$
$\Rightarrow \nabla \cdot \vec{E}=0$ when $\vec{K} \cdot \vec{E}_{0}=0 \Rightarrow \overrightarrow{\mathrm{E}}$ is \perp to wave's direction of propagation

More constraints on plane waves

- Constraints following from $\vec{\nabla} \cdot \vec{B}=0$

$$
\nabla \cdot \vec{B}=\vec{k} \cdot \vec{B}_{0} \cos (\vec{k} \cdot \vec{r}-\omega t)=0 \Rightarrow \vec{k} \cdot \vec{B}=0
$$

$\Rightarrow \vec{B}$ is \perp to direction of propagation

- Constraints following from $\vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$
- Time derivative does not change direction of $B \rightarrow \vec{E} \perp \vec{B}$
- Same conclusion follows from: $\vec{\nabla} \times \vec{B}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$

Conclusion: $\vec{k} \perp \overrightarrow{\mathrm{E}} \perp \overrightarrow{\mathrm{B}} \perp \vec{k}$

More constraints on plane waves

- Let's now calculate: $\vec{\nabla} \times \vec{B}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$

$$
\begin{aligned}
& \frac{1}{c} \frac{\partial \vec{E}}{\partial t}=\frac{\omega}{c} \vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t)=k \vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t) \\
& \vec{\nabla} \times \vec{B}=\vec{\nabla} \times \vec{B}_{0} \cos \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)
\end{aligned}
$$

- Using $\vec{\nabla} \times(\vec{v} s)=\vec{\nabla} \times \vec{v}+\vec{\nabla} s \times \vec{v}$ and the fact that $\mathrm{B}_{0}=$ const
$\vec{\nabla} \times \vec{B}=\vec{\nabla} \times\left[\vec{B}_{0} \cos \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right)\right]=$
$=\left(\vec{\nabla} \times \vec{B}_{0}\right) \cos (\vec{k} \cdot \vec{r}-\omega t)+\vec{\nabla} \cos \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right) \times \vec{B}_{0}=$
$=-\left(k_{x} \hat{x}+k_{y} \hat{y}+k_{z} \hat{z}\right) \sin \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right) \times \vec{B}_{0}=$
$=-\left(\vec{k} \times \vec{B}_{0}\right) \sin (\vec{k} \cdot \vec{r}-\omega t)$

More constraints on plane waves

- From $\vec{\nabla} \times \vec{B}=\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$ it follows that
$-\left(\vec{k} \times \vec{B}_{0}\right) \sin (\vec{k} \cdot \vec{r}-\omega t)=k \vec{E}_{0} \sin (\vec{k} \cdot \vec{r}-\omega t)$
$\Rightarrow \vec{E}_{0}=-\hat{k} \times \vec{B}_{0}$ or $\vec{k}, \overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{B}}$ are right handed ortogonal vectors
- Important consequences:
- In cgs, E and B have the same magnitude

$$
\left|\vec{E}_{0}\right|=\left|-\hat{k} \times \vec{B}_{0}\right| \Rightarrow E_{0}=B_{0}
$$

- $\vec{E}_{0} \times \vec{B}_{0}$ is parallel to the propagation of wave

- $\vec{E}_{0}=-\hat{k} \times \vec{B}_{0} \Rightarrow \vec{E}_{0} \times \vec{B}_{0}=\left|\vec{E}_{0}\right|^{2} \hat{k}$
- NB: $\mathrm{E} \times \mathrm{B}$ has an important physical meaning that we will soon see
G. Sciolla - MIT
8.022 - Lecture 20

Polarization of EM waves

- Did we use all of our freedom in choosing the waves?
- No, we can still choose the so called "polarization state"
- Linear polarization:
- Consider a plane wave propagating in the x direction
- Choose the coordinate system so that at $\mathrm{t}=0 \vec{E} / / \hat{y}$ and $\vec{B} / / \hat{z}$
- If the directions of E_{0} and B_{0} are constant in time, the wave is "linearly polarized"

$$
\left\{\begin{array}{l}
\vec{E}=E_{0} \cos (k x-\omega t) \hat{y} \\
\vec{B}=B_{0} \cos (k x-\omega t) \hat{z}
\end{array}\right.
$$

NB: direction of polarization = direction of electric field

Linear Polarization of EM waves

- How to produce linearly polarized waves?
- Oscillating charge distribution in a conductor
- Broadcasting antenna
- How to produce such charge?
- Long conductor driven by oscillating current
- How do we receive the signal?
- Receiving antenna

$\omega t=0$

When receiver is perpendicular to broadcasting antenna: no reception because there is not enough room for charges to oscillate

Demo K1

Demo K1: E of microwaves

- A microwave generator produces a signal of 10.5 GHz polarized EM waves

Antenna

Differential amplifier Scope

- How should we orient antenna to detect a signal on the scope?
- Antenna // E will detect signal
- Antenna perpendicular to E: no signal

Polaroids

- Sheet of plastic embedded with organic molecules extended in one direction
- They can carry current in that particular direction: behave like antennas!
- When linearly polarized light hits the polaroid:
- If E is aligned with orientation of molecules:
- Charges move \rightarrow current is generated \rightarrow plastic heats: light stopped
- If E is perpendicular to orientation of molecules ("preferred direction"):
- Charges will not be able to move in that direction: light goes through

Conclusion:

- Polaroids are transparent to light polarized // to their preferred direction and opaque to light polarized in the direction perpendicular to their preferred direction

Polaroids and polarization direction

- What happens when the light is polarized in a direction in between the preferred direction and its perpendicular?
- Example: light polarized along x axis; polaroid oriented at θ angle

$$
\begin{aligned}
& \vec{E}=E_{0} \cos (k z-\omega t) \hat{x} \\
& \hat{p}=\hat{x} \cos \theta+\hat{y} \sin \theta
\end{aligned}
$$

- Light will go through partially
- Since E has a component // to preferred direction of polaroid
- E coming out is overlap between incoming E and polaroid's orientation
$\left|\vec{E}_{\text {out }}\right|=\vec{E} \cdot \hat{p}=E_{0} \cos (k z-\omega t)(\hat{x} \cos \theta+\hat{y} \sin \theta) \cdot \hat{x}=E_{0} \cos \theta \cos (k z-\omega t)$
$\vec{E}_{\text {out }}=|\vec{E} \bullet \hat{p}| \hat{p}$ (parallel to polaroid's orientation)
Conclusion:
Polaroids reduce the amplitude of linearly polarized light by $\cos \theta$ (angle between E and polaroid's orientation) and rotates the orientation of E by θ

Polarization of random light

- Light from a bulb, sunlight, etc is not polarized
- Superposition of many plane waves, each with its own polarization

$$
\vec{E}_{\text {random }}=\sum_{i} E_{0}\left(\hat{x} \cos \theta_{i}+\hat{y} \sin \theta_{i}\right) \cos (k z-\omega t)
$$

- When light passes through a polaroid becomes linearly polarized
- If polaroid is oriented // x axis:

$$
\vec{E}_{\text {out }}=\sum_{i} E_{0}\left(\hat{x} \cos \theta_{i}\right) \cos (k z-\omega t)=E_{0} \hat{x} \cos (k z-\omega t) \sum_{i} \cos \theta_{i}
$$

- Conclusion:
- Polaroids can be used to produce linearly polarized light
- The intensity of the light will be reduced

Demo: 3 vs 2 polaroids

- 2 polaroids with orthogonal preferred direction will block light
- First polaroid (P1) polarizes light in the direction x (for example)
- Second polaroid (P2)oriented in the y direction, but E is now just //x

- Now place a third polaroid P3 in between p1 and p2 (at 45 degrees)
- P1 will polarize light //x
- P3 will select only component // to its preferred direction and rotate direction of polarization by 45 deg. $E_{0}{ }^{\prime}=E_{0} \cos 45^{\circ}$
- P2 will select component y direction that now is not 0 anymore. Intensity further reduced, but not $0!\mathrm{E}_{0}{ }^{\prime}=\mathrm{E}_{0}\left(\cos 45^{\circ}\right)^{2}=\mathrm{E}_{0} / 2$

Polarization of microwaves (K3)

- 10.5 GHz polarized microwaves

- Rotate the receiver to find the direction of polarization of signal
- Now introduce a conductive "comb" in between transmitter and receiver
- When teeth of comb are // E: signal is blocked
- When they are perpendicular to E: signal can go through
\rightarrow Exactly the same behavior of Polaroid for light!
G. Sciolla - MIT
8.022 - Lecture 20

Circular polarization

- Consider a wave with the following form:

$$
\begin{aligned}
& \vec{E}=E_{0} \hat{x} \sin (k z-\omega t)+E_{0} \hat{y} \cos (k z-\omega t) \\
& \vec{B}=B_{0} \hat{y} \sin (k z-\omega t)-B_{0} \hat{x} \cos (k z-\omega t)
\end{aligned}
$$

- What is it?
- Easier to understand if we look at $\mathrm{z}=0$

$$
\begin{aligned}
& \vec{E}=-E_{0} \hat{x} \sin (\omega t)+E_{0} \hat{y} \cos (\omega t) \\
& \vec{B}=-B_{0} \hat{y} \sin (\omega t)-B_{0} \hat{x} \cos (\omega t)
\end{aligned}
$$

- Electric and magnetic fields rotate at frequency ω
- Circular polarization because E and B vectors describe circles over time
G. Sciolla - MIT
8.022 - Lect

Circular polarization (2)

- How to produce it?
- Rotating dipole

- 2 antennas at 90 deg driven by currents off by 90 deg

- NB: circular polarization does exist in nature
- Example: circular polarization filters used in photography
G. Sciolla - MIT
8.022 - Lecture 20

Elliptical Polarization

- For a given \mathbf{k}, there are 2 independent solutions for the plane waves, e.g. 2 possible directions of \mathbf{E}

$$
\begin{aligned}
& \vec{E}_{1}=E_{0} \hat{x} \cos \left(k z-\omega t+\phi_{1}\right) \\
& \vec{E}_{2}=E_{0} \hat{y} \cos \left(k z-\omega t+\phi_{2}\right)
\end{aligned}
$$

- All other solutions are just linear combinations of these
- $\phi_{1}=\phi_{2}$: linear polarization
- $\phi_{1}=\phi_{2}+90^{\circ}$: linear polarization
- All the rest: elliptical polarization

Summary and outlook

- Today:
- Electromagnetic plane waves
- Constraints on E, B and k following from Maxwell's equations
- E, B and k are always perpendicular to each other
- Amplitude of E and B are the same in cgs
- Polarization of EM waves
- Polaroids and linear and circular polarization
- Next Tuesday:
- Energy and momentum carried by EM waves
- Poynting vector
- Transmission lines
G. Sciolla - MIT
8.022 - Lecture 20

8.022 subject evaluation

- Fast:
- 5-10 minutes of your time
- Important:
- Your chance to make comments about the class
- You can be honest!
- We will not look at the forms until after grades are registered
- A volunteer will collect the results and will bring them to the PEO(?)
- NB:
- Fill in both sides of the form; side 1 will be read by computer
- Staff: in addition to lecturer and recitation instructor you can fill in the evaluation for ONE tutor:
- Michael Shaw OR Min Liang Zhao

