8.022 (E\&M) - Lecture 5

Topics:

- More on conductors... and many demos!
- Capacitors

Last time...

- Curl: $\quad \operatorname{curl} \vec{F}=\nabla \times \vec{F}$
- Stoke's theorem: $\quad \oint_{C} \vec{F} \bullet d \vec{s}=\int_{A} \operatorname{curl} \vec{F} \cdot d \vec{A} \quad \Rightarrow \quad \nabla \times \vec{E}=0$
- Laplacian: $\nabla^{2} \phi \equiv \nabla \cdot \nabla \phi$

$$
\nabla^{2} \phi=-4 \pi \rho \text { (Poisson) } \xrightarrow{\text { in vacuum }} \nabla^{2} \phi=0 \text { (Laplace) }
$$

- Conductors
- Materials with free electrons (e.g. metals)
- Properties:
- Inside a conductor E=0
- $\mathrm{E}_{\text {surface }}=4 \pi \sigma$
- Field lines perpendicular to the surface \rightarrow surface is equipotential
- Uniqueness Theorem
- Given $\rho(x y z)$ and boundary conditions, the solution $\phi(x y z)$ is unique

Charge distribution on a conductor

- Let's deposit a charge Q on a tear drop-shaped conductor
- How will the charge distribute on the surface? Uniformly?

- Experimental answer: NO! (Demo D28)
- $\sigma_{\text {tip }} \gg \sigma_{\text {flat }}$
- Important consequence
- Although $\phi=$ const, $\mathrm{E}=4 \pi \sigma$ $\rightarrow \mathrm{E}_{\text {tip }} \gg \mathrm{E}_{\text {flat }}$

- Why?
G. Sciolla - MIT

Charge distribution on a conductor (2)

- Qualitative explanation
- Consider 2 spherical conductors connected by conductive wire
- Radii: R_{1} and R_{2} with $R_{1} \gg R_{2}$
- Deposit a charge Q on one of them
\rightarrow charge redistributes itself until $\phi=$ constant

$$
\left\{\begin{array}{l}
\phi_{1}=\frac{Q_{1}}{R_{1}}=\frac{Q_{2}}{R_{2}}=\phi_{2} \\
\mathrm{E}_{1}=\frac{Q_{1}}{R_{1}{ }^{2}}=\frac{\phi_{1}}{R_{1}} \\
\mathrm{E}_{2}=\frac{Q_{2}}{R_{2}{ }^{2}}=\frac{\phi_{2}}{R_{2}}
\end{array} \Rightarrow \frac{E_{1}}{\mathrm{E}_{2}}=\frac{R_{2}}{R_{1}} \Rightarrow \frac{\sigma_{1}}{\sigma_{2}}=\frac{R_{2}}{R_{1}}\right.
$$

- Conclusion:

Electric field is stronger where curvature (1/R) is larger

- More experimental evidence: D29 (Lightning with Van der Graaf)
G. Sciolla - MIT
8.022 - Lecture 5

Shielding

We proved that in a hollow region inside a conductor $\mathrm{E}=0$

- This is the principle of shielding
- Do we need a solid conductor or would a mesh do?
- Demo D32 (Faraday's cage in Van der Graaf)
- Is shielding perfect?

Application of Uniqueness Theorem: Method of images

- What is the electric potential created by a point charge + Q at a distance y from an infinite conductive plane?
- Consider field lines:
- Radial around the charge
- Perpendicular to the surface conductor

- The point charge $+Q$ induces - charges on the conductor

Method of images

- Apply the uniqueness theorem
- It does not matter how you find the potential ϕ as long as the boundary conditions are satisfied. The solution is unique.
- In our case: on the conductor surface: $\phi=0$ and always perpendicular
- Can we find an easier configuration of charges that will create the same field lines above the conductor surface?
. YES!
- For this system of point charges we can calculate $\phi(x, y, z)$ anywhere
- This is THE solution (uniqueness)
- NB: we do not care what happens below the surface of the conductor: that is nor the region under study

G. Sciolla - MIT
8.022 - Lecture 5

7

Capacitance

- Consider 2 conductors at a certain distance
- Deposit charge +Q on one and -Q on the other
- They are conductors \rightarrow each surface is equipotential
- What is the $\Delta \phi$ between the 2 ?
- Let's try to calculate:

$$
V \equiv \phi_{2}-\phi_{1}=-\int_{1}^{2} \vec{E} \cdot d \vec{s}=Q \times(\text { constant depending on geometry })
$$

- Caveat: C is proportional to Q only if there is enough Q, uniformly spread...
- Naming the proportionality constant $1 / \mathrm{C}: \Rightarrow Q=C V$
- Definitions:
- C = capacitance of the system
- Capacitor: system of 2 oppositely charged conductors

Units of capacitance

- Definition of capacitance:

$$
Q=C V \quad \Rightarrow \quad C=\frac{Q}{V}
$$

- Units:
- SI: Farad (F) = Coulomb/Volt
- cgs: cm = esu/(esu/cm)
- Conversion: $1 \mathrm{~cm}=1.11 \times 10^{-12} \mathrm{~F} \sim 1 \mathrm{pF}$
- Remember:
- 1 Coulomb is a BIG charge: 1 F is a BIG capacitance
- Usual C ~ pF- $\mu \mathrm{F}$

Simple capacitors:

Isolated Sphere

- Conductive sphere of radius R in $(0,0,0)$ with a charge Q
- Review questions:
- Where is the charge located?
- Hollow sphere? Solid sphere? Why?
- What is the E everywhere in space?
- Is this a capacitor?

- Yes! The second conductor is a virtual one: infinity
- Calculate the capacitance:

$$
\left\{\begin{array}{c}
V=\phi_{R}-\phi_{\infty}=Q / R \\
Q=Q
\end{array} \quad \Rightarrow \quad C_{\text {sphere }}=R\right.
$$

- Capacitors are everywhere!

The prototypical capacitor: Parallel plates

- Physical configuration:
- 2 parallel plates, each of area A, at a distance d - NB: if $\mathrm{d}^{2} \ll A \rightarrow \sim$ infinite parallel planes
- Deposit +Q on top plate and -Q on bottom plate

- Capacitance:

$$
\left\{\begin{array}{c}
V=\int_{\text {top }}^{\text {bottom }} \vec{E} \cdot d \vec{s}=\int_{\text {top }}^{\text {bottom }}(4 \pi \sigma) \hat{n} \bullet d \vec{n}=4 \pi\left(\frac{Q}{A}\right) d \Rightarrow C=\frac{Q}{V}=\frac{A}{4 \pi d} \\
Q=Q
\end{array}\right.
$$

Parallel plates capacitor: discussion

- Parallel plates capacitor:

$$
C=\frac{Q}{V}=\frac{A}{4 \pi d}
$$

- Observations:
- C depends only on the geometry of the arrangement
- As it should, not on Q deposited or V between the plates!
- Electric field on surface of conductor: $2 \pi \sigma$ or $4 \pi \sigma$??? $\mathrm{E}=2 \pi \sigma$
- Infinite plane of charges: $2 \pi \sigma$
- With $\sigma=\mathrm{Q} / \mathrm{A}$
- Conductor surface: $4 \pi \sigma$
- With $\sigma=\mathrm{Q} / 2 \mathrm{~A}$
\rightarrow No contradiction if σ correctly defined!
- What is the E outside the capacitor? Zero!

G. Sciolla - MIT
8.022 - Lecture 5

More review questions:

E in Nested Spherical Shells

- Configuration:
- 2 concentric spherical shells
- Charge: +Q (-Q) on inner (outer) sphere
- Calculate \mathbf{E} in the following regions:

- $r<R_{1}, R_{1}<r<R_{2}, r>R_{2}$

Gauss's law is the key.

- Φ_{E} on spherical surface with $\mathrm{r}<\mathrm{R}_{1} . \mathrm{Q}_{\mathrm{enc}}=0 \Rightarrow \mathrm{E}=0$
- Φ_{E} on spherical surface with $\mathrm{r}>\mathrm{R}_{2} . \mathrm{Q}_{\mathrm{enc}}=+\mathrm{Q}-\mathrm{Q}=0 \Rightarrow \mathrm{E}=0$
- Φ_{E} on spherical surface with $\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2} . \mathrm{Q}_{\text {enc }}=+\mathrm{Q} \Rightarrow \mathrm{E} \neq 0$
$\Phi_{\mathrm{E}}=\int \vec{E} \cdot d \vec{s}=E(4 \pi r)=4 \pi Q \quad \Rightarrow \overrightarrow{\mathrm{E}}=\frac{\mathrm{Q}}{\mathrm{r}^{2}} \hat{r}$

More capacitors: Nested Spherical Shells

- Same configuration:
- 2 concentric spherical shells
- Charge: +Q (-Q) on inner (outer) sphere
- Capacitance:

- Key: finding the potential difference V
$V=\phi_{1}-\phi_{2}=-\int_{\mathrm{R} 2}^{\mathrm{R} 1} \vec{E} \cdot d \overrightarrow{\mathrm{~s}}=-\int_{\mathrm{R} 2}^{\mathrm{R} 1} \frac{Q}{r^{2}} d r=\frac{Q}{R_{1}}-\frac{Q}{R_{2}} \Rightarrow C=\frac{Q}{V}=\frac{R_{1} R_{2}}{R_{2}-R_{1}}$
- If $\mathrm{R}_{2}-\mathrm{R}_{1}=\mathrm{d} \ll \mathrm{R}_{2} \rightarrow 0$
$C=\frac{R_{1} R_{2}}{R_{2}-R_{1}} \sim \frac{R_{1}^{2}}{d}=\frac{4 \pi R_{1}^{2}}{4 \pi d}=\frac{A_{\text {sphere }}}{4 \pi d} \quad$ same as plane capacitor!

Energy stored in a capacitor

- Consider a capacitor with charge +/-q
- How much work is needed to bring a positive charge dq from the negative plate to the positive plate?
- NB: we are charging the capacitor!

$$
d W=V(q) d q=\frac{q}{C} d q
$$

- How much work is needed to charge the capacitor from scratch?

$$
W=\int_{0}^{Q} d W=\int_{0}^{Q} \frac{q}{C} d q=\frac{Q^{2}}{2 C}
$$

- Energy stored in the capacitor:

$$
U=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}
$$

- Is this result consistent with what we found earlier?
- Example: parallel plate capacitor

$$
U=\frac{1}{8 \pi} \int E^{2} d V=\frac{1}{8 \pi} E^{2} A d=\frac{1}{8 \pi}(4 \pi \sigma)^{2} A d \frac{A}{A}=\frac{Q^{2}}{2}\left(4 \pi \frac{d}{A}\right)=\frac{1}{2} \frac{Q^{2}}{C}
$$

Cylindrical Capacitor

- Concentric cylindrical shells with charge +/-Q. Calculate:
- Electric Field in between plates
$r<a$ and $r>b$: $\mathrm{E}=0$ (Gauss)
$\mathrm{a}<\mathrm{r}<\mathrm{b}$: Gauss's law on cylinder of radius r : $\overrightarrow{\mathrm{E}}(\mathrm{r})=\frac{2 \mathrm{Q}}{\mathrm{L}} \frac{\hat{r}}{r}$
- V between plates:

$$
\mathrm{V}=\int_{\mathrm{a}}^{\mathrm{b}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}=\int_{\mathrm{a}}^{\mathrm{b}} \frac{2 \mathrm{Q}}{\mathrm{~L}} \frac{d r}{r}=\frac{2 \mathrm{Q}}{\mathrm{~L}} \ln \frac{b}{a}
$$

- Capacitance C: $\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{V}}=\frac{\mathrm{L}}{2 \ln \frac{b}{a}}$

- Calculate energy stored in capacitor:

$$
\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2} \frac{\mathrm{~L}}{2 \ln \frac{b}{a}}\left(\frac{2 \mathrm{Q}}{\mathrm{~L}} \ln \frac{b}{a}\right)^{2}=\frac{Q^{2}}{L} \ln \frac{b}{a}
$$

Next time...

- More on capacitors
- Charges in motion: currents
- Some help to get ready for quiz \#1?
- Review of Electrostatics?
G. Sciolla - MIT

