8.022 (E&M) - Lecture 5

Topics:

- More on conductors... and many demos!
- Capacitors

Last time...

- Curl: $\operatorname{curl} \vec{F} = \nabla \times \vec{F}$
 - Stoke's theorem: $\oint_C \vec{F} \cdot d\vec{s} = \int_A \text{curl } \vec{F} \cdot d\vec{A} \implies \nabla \times \vec{E} = 0$
- Laplacian: $\nabla^2 \phi \equiv \nabla \cdot \nabla \phi$

$$\nabla^2 \phi = -4\pi\rho$$
 (Poisson) $\xrightarrow{\text{in vacuum}} \nabla^2 \phi = 0$ (Laplace)

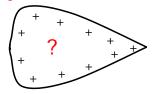
- Conductors
 - Materials with free electrons (e.g. metals)
 - Properties:
 - Inside a conductor E=0
 - $E_{surface} = 4\pi\sigma$
 - Field lines perpendicular to the surface → surface is equipotential
- Uniqueness Theorem
 - Given $\rho(xyz)$ and boundary conditions, the solution $\phi(xyz)$ is unique

G. Sciolla – MIT

8.022 - Lecture 5

Charge distribution on a conductor

- Let's deposit a charge Q on a tear drop-shaped conductor
- How will the charge distribute on the surface? Uniformly?



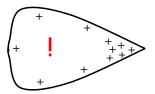
- Experimental answer: NO! (Demo D28)
 - $\sigma_{tip} >> \sigma_{flat}$
- Important consequence
 - Although ϕ =const, E=4 $\pi\sigma$

$$\rightarrow$$
 E_{tip} >> E_{flat}

Why?

G. Sciolla – MIT

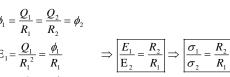
8.022 - Lecture 5



Charge distribution on a conductor (2)

- Qualitative explanation
 - Consider 2 spherical conductors connected by conductive wire
 - Radii: R_1 and R_2 with $R_1 >> R_2$
 - Deposit a charge Q on one of them
 - → charge redistributes itself until ϕ =constant





Conclusion:

Electric field is stronger where curvature (1/R) is larger

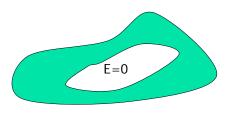
■ More experimental evidence: D29 (Lightning with Van der Graaf)

G. Sciolla - MIT

8.022 - Lecture 5

Shielding

We proved that in a hollow region inside a conductor E=0



- This is the principle of shielding
- Do we need a solid conductor or would a mesh do?
 - Demo D32 (Faraday's cage in Van der Graaf)
 - Is shielding perfect?

G. Sciolla – MIT

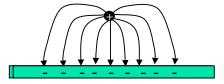
8.022 - Lecture 5

5

Application of Uniqueness Theorem:

Method of images

- What is the electric potential created by a point charge +Q at a distance y from an infinite conductive plane?
- Consider field lines:
 - Radial around the charge
 - Perpendicular to the surface conductor



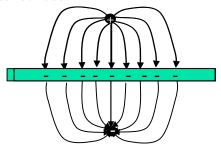
■ The point charge +Q induces – charges on the conductor

G. Sciolla – MIT

8.022 - Lecture 5

Method of images

- Apply the uniqueness theorem
 - It does not matter how you find the potential φ as long as the boundary conditions are satisfied. The solution is unique.
 - In our case: on the conductor surface: φ=0 and always perpendicular
- Can we find an easier configuration of charges that will create the same field lines above the conductor surface?
 - YES!
 - For this system of point charges we can calculate φ(x,y,z) anywhere
 - This is THE solution (uniqueness)
 - NB: we do not care what happens below the surface of the conductor: that is nor the region under study

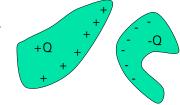


G. Sciolla - MIT

8.022 - Lecture 5

Capacitance

- Consider 2 conductors at a certain distance
- Deposit charge +Q on one and -Q on the other
 - They are conductors
 - → each surface is equipotential



- What is the $\Delta \phi$ between the 2?
 - Let's try to calculate:

$$V \equiv \phi_2 - \phi_1 = -\int_1^2 \vec{E} \cdot d\vec{s} = Q \times \text{(constant depending on geometry)}$$

- Caveat: C is proportional to Q only if there is enough Q, uniformly spread..
- Naming the proportionality constant 1/C: ⇒
 - Q = CV

- Definitions:
 - C = capacitance of the system
 - Capacitor: system of 2 oppositely charged conductors

G. Sciolla – MIT

8.022 - Lecture 5

Units of capacitance

■ Definition of capacitance:

$$Q = CV \implies C = \frac{Q}{V}$$

- Units:
 - SI: Farad (F) = Coulomb/Volt
 - \blacksquare cgs: cm = esu/(esu/cm)
 - Conversion: $1 \text{ cm} = 1.11 \text{ x } 10^{-12} \text{ F} \sim 1 \text{ pF}$
- Remember:
 - 1 Coulomb is a BIG charge: 1 F is a BIG capacitance
 - Usual C ~ pF-µF

G. Sciolla - MIT

8.022 - Lecture 5

^

Simple capacitors:

Isolated Sphere

- Conductive sphere of radius R in (0,0,0) with a charge Q
 - Review questions:
 - Where is the charge located?
 - Hollow sphere? Solid sphere? Why?
 - What is the E everywhere in space?

- Yes! The second conductor is a virtual one: infinity
- Calculate the capacitance:

$$\begin{cases} V = \phi_R - \phi_\infty = Q / R \\ Q = Q \end{cases} \Rightarrow C_{sphere} = R$$

Capacitors are everywhere!

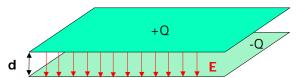
G. Sciolla - MIT

8.022 - Lecture 5

The prototypical capacitor:

Parallel plates

- Physical configuration:
 - 2 parallel plates, each of area A, at a distance d
 - NB: if $d^2 << A \rightarrow \sim$ infinite parallel planes
 - Deposit +Q on top plate and -Q on bottom plate



Capacitance:

$$\begin{cases} V = \int_{top}^{bottom} \vec{E} \cdot d\vec{s} = \int_{top}^{bottom} (4\pi\sigma)\hat{n} \cdot d\vec{n} = 4\pi \left(\frac{Q}{A}\right) d \\ Q = Q \end{cases} \Rightarrow \boxed{C = \frac{Q}{V} = \frac{A}{4\pi d}}$$

Parallel plates capacitor: discussion

Parallel plates capacitor:

$$C = \frac{Q}{V} = \frac{A}{4\pi d}$$

- Observations:
 - C depends only on the geometry of the arrangement
 - As it should, not on Q deposited or V between the plates!
 - Electric field on surface of conductor: $2\pi\sigma$ or $4\pi\sigma$???
 - Infinite plane of charges: $2\pi\sigma$
 - With σ=Q/A
 - Conductor surface: 4πσ
 - With σ =Q/2A
 - \rightarrow No contradiction if σ correctly defined!
- $E=2\pi\sigma$

 $E=2\pi\sigma$

■ What is the E outside the capacitor? Zero!

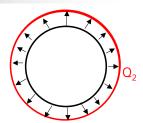
G. Sciolla - MIT

8.022 - Lecture 5

More review questions:

E in Nested Spherical Shells

- Configuration:
 - 2 concentric spherical shells
 - Charge: +Q (–Q) on inner (outer) sphere



- Calculate **E** in the following regions:
 - $r < R_1, R_1 < r < R_2, r > R_2$

Gauss's law is the key.

- Φ_E on spherical surface with r<R₁. $Q_{enc}=0 \implies E=0$
- $\Phi_{\rm E}$ on spherical surface with r>R₂. $Q_{\rm enc}$ =+Q-Q=0 \Rightarrow E=0
- Φ_E on spherical surface with $R_1 < r < R_2$. $Q_{enc} = +Q \Rightarrow E \neq 0$

$$\Phi_{\rm E} = \int \vec{E} \cdot d\vec{s} = E(4\pi r) = 4\pi Q \quad \Rightarrow \vec{\rm E} = \frac{\rm Q}{\rm r^2} \hat{r}$$

G. Sciolla - MIT

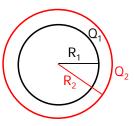
8.022 – Lecture 5

13

More capacitors:

Nested Spherical Shells

- Same configuration:
 - 2 concentric spherical shells
 - Charge: +Q (–Q) on inner (outer) sphere



- Capacitance:
 - Key: finding the potential difference V

$$V = \phi_1 - \phi_2 = -\int_{R_2}^{R_1} \vec{E} \cdot d\vec{s} = -\int_{R_2}^{R_1} \frac{Q}{r^2} dr = \frac{Q}{R_1} - \frac{Q}{R_2} \implies \boxed{C = \frac{Q}{V} = \frac{R_1 R_2}{R_2 - R_1}}$$

■ If $R_2 - R_1 = d < < R_2 \rightarrow 0$

$$C = \frac{R_1 R_2}{R_2 - R_1} \sim \frac{R_1^2}{d} = \frac{4\pi R_1^2}{4\pi d} = \frac{A_{sphere}}{4\pi d}$$
 same as plane capacitor!

Energy stored in a capacitor

- Consider a capacitor with charge +/-q
- How much work is needed to bring a positive charge dq from the negative plate to the positive plate?
 - NB: we are charging the capacitor!

$$dW = V(q)dq = \frac{q}{C}dq$$

$$W = \int_0^{\varrho} dW = \int_0^{\varrho} \frac{q}{C} dq = \frac{Q^2}{2C}$$

- Energy stored in the capacitor: $U = \frac{Q^2}{2C} = \frac{1}{2}CV^2$
- Is this result consistent with what we found earlier?
 - Example: parallel plate capacitor

$$U = \frac{1}{8\pi} \int E^2 dV = \frac{1}{8\pi} E^2 A d = \frac{1}{8\pi} (4\pi\sigma)^2 A d \frac{A}{A} = \frac{Q^2}{2} (4\pi \frac{d}{A}) = \frac{1}{2} \frac{Q^2}{C}$$

15

Cylindrical Capacitor

- Concentric cylindrical shells with charge +/-Q. Calculate:
 - Electric Field in between plates

r<a and r>b: E=0 (Gauss)

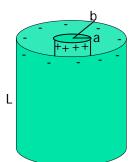
a<r
b: Gauss's law on cylinder of radius r: $\vec{E}(r) = \frac{2Q}{L} \frac{\hat{r}}{r}$

- V between plates: $V = \int_a^b \vec{E} \cdot d\vec{r} = \int_a^b \frac{2Q}{L} \frac{dr}{r} = \frac{2Q}{L} \ln \frac{b}{a}$
- Capacitance C: $C = \frac{Q}{V} = \frac{L}{2 \ln \frac{b}{a}}$
- Calculate energy stored in capacitor:

$$U = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{L}{2\ln\frac{b}{L}} \left(\frac{2Q}{L}\ln\frac{b}{a}\right)^{2} = \frac{Q^{2}}{L}\ln\frac{b}{a}$$

G. Sciolla - MIT

8.022 - Lecture 5



Next time...

- More on capacitors
- Charges in motion: currents
- Some help to get ready for quiz #1?
 - Review of Electrostatics?

G. Sciolla – MIT

8.022 - Lecture 5