8.022 (E\&M) - Lecture 6

Topics:

- More on capacitors
- Mini-review of electrostatics
- (almost) all you need to know for Quiz 1

Last time...

- Capacitor:
- System of charged conductors
- Capacitance: $\quad C=\frac{Q}{V}$
- It depends only on geometry

- Energy stored in capacitor:
- In agreement with energy associated with electric field

$$
U=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}
$$

- Let's now apply what we have learned...

Wimshurst machine and Leyden Jars (E1)

- A Wimshurst machine is used to charge 2 Leyden Jars
- Leyden Jars are simple cylindrical capacitors

- What happens when we connect the outer and the outer surface?
- Why?

Dissectible Leyden Jar (E2)

- A Wimshurst machine is used to charge a Leyden Jar
- Where is the charge stored?
- On the conductors?
- On the dielectric?
- Take apart capacitor and short conductors
- Nothing happens!

- Why?
- Because it's "easier" for the charges to stay on dielectric when we take conductors apart or energy stored would have to change:
$\mathrm{U}=\mathrm{Q}^{2} / 2 \mathrm{C}$, and moving plates away C would decrease $\rightarrow \mathrm{U}$ increase
G. Sciolla - MIT 8.022 - Lecture 6

Capacitors and dielectrics

- Parallel plates capacitor:

$$
C=\frac{Q}{V}=\frac{Q}{E d}=\frac{A}{4 \pi d}
$$

- Add a dielectric between the plates:
- Dielectric's molecules are not spherically symmetric
- Electric charges are not free to move
\rightarrow E will pull + and - charges apart and orient them // E

- $\mathrm{E}_{\text {dielectric }}$ is opposite to $\mathrm{E}_{\text {capacitor }}$
- Given $\mathrm{Q} \rightarrow \mathrm{V}$ decreases
- Given $\mathrm{V} \rightarrow \mathrm{Q}$ increases $\} \rightarrow C$ increased!

Energy is stored in capacitors (E6)

- A $100 \mu \mathrm{~F}$ oil filled capacitor is charged to 4 KV
- What happens if we discharge it thought a 12 " long iron wire?

- How much energy is stored in the capacitor?
- $\mathrm{U}=1 / 2 \mathrm{CV}^{2}=800 \mathrm{~J}$
Big!
- Resistance of iron wire: very small, but >> than the rest of the circuit
\rightarrow All the energy is dumped on the wire in a small time
\rightarrow Huge currents! \rightarrow Huge temperatures! \rightarrow The wire will explode!

Capacitors in series

- Let's connect 2 capacitors C_{1} and C_{2} in the following way:

- What is the total capacitance C of the new system?

$$
\begin{aligned}
& V_{1}+V_{2}=V \\
& Q_{1}=Q_{2}=Q \\
& \frac{1}{C}=\frac{V}{Q}=\frac{V_{1}+V_{2}}{Q}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
\end{aligned}
$$

$$
C=\left(\sum_{i} \frac{1}{C_{i}}\right)^{-1}
$$

Capacitors in parallel

- Let's connect 2 capacitors C_{1} and C_{2} in the following way:

- What is the total capacitance C of the new system?

$$
\begin{aligned}
& V_{1}=V_{2}=V \\
& Q_{1}+Q_{2}=Q \\
& C=\frac{Q_{1}+Q_{2}}{V}=\frac{Q_{1}}{V_{1}}+\frac{Q_{2}}{V_{2}}=C_{1}+C_{2}
\end{aligned} \quad \rightarrow \quad C=\sum_{i=1}^{i=N} C_{i}
$$

Application

- Why are capacitors useful?
- ...among other things...
- They can store large amount of energy and release it in very short time
- Energy stored: $\mathrm{U}=1 / 2 \mathrm{CV}^{2}$
- The larger the capacitance, the larger the energy stored at a given V
- How to increase the capacitance?
- Modify geometry
- For parallel plates capacitors $\mathrm{C}=\mathrm{A} /(4 \pi \mathrm{~d})$: increase A or decrease d
- Add a dielectric in between the plates
- Add capacitors in parallel

Bank of capacitors (E7)

- Bank of $12 \times 80 \mu \mathrm{~F}$ capacitors is parallel

- Total capacitance: $960 \mu \mathrm{~F}$
- Discharged on a 60 W light bulb when capacitors are charged at:
- V = $100 \mathrm{~V}, 200 \mathrm{~V}, \mathrm{~V}=300 \mathrm{~V}$
- What happens?
- Energy stored in capacitor is $\mathrm{U}=1 / 2 \mathrm{CV}^{2}$

$$
\rightarrow \mathrm{V}=\mathrm{V}_{0}: 2 \times \mathrm{V}_{0}: 3 \times \mathrm{V}_{0} \rightarrow \mathrm{U}=\mathrm{U}_{0}: 4 \times \mathrm{U}_{0}: 9 \times \mathrm{U}_{0}
$$

- $\quad \mathrm{R}$ is the same \rightarrow time of discharge will not change with V
- The power will increase by a factor 9 ! $\left(P=R I^{2}\right.$ and $\left.I=V / R\right)$
- Will the bulb survive?
- Remember: light bulb designed for 120 V ...
G. Sciolla - MIT
8.022 - Lecture 6

Review of Electrostatics for Quiz 1

Disclaimer:

- Can we review all of the electrostatics in less than 1 hour?
- No, but we will try anyway...
- Only main concepts will be reviewed
- Review main formulae and tricks to solve the various problems
- No time for examples
- Go back to recitations notes or Psets and solve problems again

The very basic:

Coulomb's law

$$
\vec{F}_{2}=\frac{q_{1} q_{2}}{\left|r_{21}\right|^{2}} \hat{r}_{21}
$$

where F_{2} is the force that the charge q_{2} feels due to q_{1}
NB: this is in principle the only thing you have to remember: all the rest follows from this an the superposition principle

The very basic:

Superposition principle

$$
\vec{F}_{Q}=\sum_{i=1}^{i=N} \frac{q_{i} Q}{\left|r_{i}\right|^{2}} \hat{r}_{i}
$$

The Importance of Superposition

Extremely important because it allows us to transform complicated problems into sum of small, simple problems that we know how to solve.

Example:

Electric Field and Electric Potential

- Solving problems in terms of $F_{\text {coulomb }}$ is not always convenient
- F depends on probe charge q
- We get rid of this dependence introducing the Electric Field

$$
\vec{E}=\frac{\vec{F}_{q}}{q}=\frac{Q}{|r|^{2}} \hat{r}
$$

- Advantages and disadvantages of \mathbf{E}
- E describes the properties of space due to the presence of charge Q ©
- It's a vector \rightarrow hard integrals when applying superposition... ©
- Introduce Electric Potential ϕ
- $\phi(P)$ is the work done to move a unit charge from infinity to $P(x, y, z)$

$$
\phi(x, y, z)=-\int_{\infty}^{P} \vec{E} \cdot d \vec{s} \quad \text { NB: true only when } \phi \text { (inf) }=0
$$

- Advantages: superposition still holds but simpler calculation (scalar) ©
G. Sciolla - MIT 8.022 - Lecture 6

Energy associated with \mathbf{E}

- Moving charges in E requires work:

$$
\begin{aligned}
& W_{1->2}=-\int_{1}^{2} \vec{F}_{C} \bullet d \vec{s} \\
& \text { where } \quad F_{\text {Coulomb }}=\frac{Q q \hat{r}}{r^{2}}
\end{aligned}
$$

- NB: integral independent of path: force conservative!
- Assembling a system of charges costs energy. This is the energy stored in the electric field:

$$
U=\frac{1}{2} \int_{\substack{\text { olume } \\ \text { with } \\ \text { charges }}} \rho \phi d V=\int_{\substack{\text { Entire } \\ \text { space }}} \frac{E^{2}}{8 \pi} d V
$$

Electrostatics problems

- In electrostatics there are 3 different ways of describing a problem:

$\phi(x, y, z)$
- Solving most problem consists in going from one formulation to another. All you need to know is: how?

From $\rho \rightarrow \mathbf{E}$

- General case:
- For a point charge: $\vec{E}=\frac{q}{|r|^{2}} \hat{r}$
- Superposition principle: $\vec{E}=\int_{V} d \vec{E}=\int_{V} \frac{d q}{|r|^{2}} \hat{r}$

Solving this integral may not be easy...

- Special cases:
- Look for symmetry and thank Mr. Gauss who solved the integrals for you
- Gauss's Law: $\Phi_{\vec{E}}=4 \pi Q_{\text {enc }}$

$$
\oint_{S} \vec{E} \cdot d \vec{A}=4 \pi \int_{V} \rho d V
$$

- N.B.:
- Gauss's law is always true but not always useful: Symmetry is needed!
- Main step: choose the "right" gaussian surface so that
 E is constant on the surface of integration

From $\rho \rightarrow \phi$

- General case:
- For a point charge: $\quad \phi=\frac{q}{r}$

NB: implicit hypothesis:

- Superposition principle:

$$
\phi=\int_{V} \frac{d q}{r}
$$

The problem is simpler than for \mathbf{E} (only scalars involved) but not trivial...

- Special cases:
- If symmetry allows, use Gauss's law to extract \mathbf{E} and then integrate \mathbf{E} to get ϕ :

$$
\phi_{2}-\phi_{1}=-\int_{1}^{2} \vec{E} \cdot d \vec{s}
$$

- N.B.: The force is conservative \rightarrow the result is the same for any path, but choosing a simple one makes your life much easier....
G. Sciolla - MIT
8.022 - Lecture 6

From ϕ to \mathbf{E} and ρ

Easy! No integration needed!

- From ϕ to $\mathbf{E} \quad \vec{E}=-\nabla \phi$
- One derivative is all it takes but... make sure you choose the best coordinate system
- You will not loose points but you will waste time...
- From ϕ to ρ
- Poisson tells you how to get from potential to charge distributions directly:

$$
\nabla^{2} \phi=-4 \pi \rho
$$

- Uncomfortable with Laplacian? Get there in 2 steps:
- First calculate E: $\vec{E}=-\nabla \phi$
- The use differential form of Gauss's law: $\nabla \cdot \vec{E}=4 \pi \rho$
G. Sciolla - MIT
8.022 - Lecture 6

Thoughts about ϕ and \mathbf{E}

- The potential ϕ is always continuous
- E is not always continuous: it can "jump"
- When we have surface charge distributions
- Remember problem \#1 in Pset 2
\rightarrow When solving problems always check for consistency!

Summary

Conductors

- Properties:
- Surface of conductors are equipotential
- E (field lines) always perpendicular to the surface
- $\mathrm{E}_{\text {inside }}=0$
- $\mathrm{E}_{\text {surface }}=4 \pi \sigma$
- What's the most useful info?
- $\mathrm{E}_{\text {inside }}=0$ because it comes handy in conjunction with Gauss's law to solve problems of charge distributions inside conductors.
- Example: concentric cylindrical shells
- Charge +Q deposited in inner shell
- No charge deposited on external shell
- What is E between the 2 shells?
- - Q induced on inner surface of inner cylinder
- $+Q$ induced on outer surface of outer cylinder
G. Sciolla - MIT
8.022 - Lecture 6

E due to Charges and Conductors

- How to find E created by charges near conductors?
- Uniqueness theorem:
- A solution that satisfies boundary conditions is THE solution
- Be creative and think of distribution of point charges that will create the same filed lines:

Method of images

- Example:

Capacitors

- Capacitance
- Two oppositely charged conductors kept at a potential difference V will have capacitance C

$$
C=\frac{Q}{V}
$$

- NB: capacitance depends only on the geometry!
- Energy stored in capacitor

$$
U=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}
$$

- What should you remember?
- Parallel plate capacitor: very well
- Be able to derive the other standard geometries
G. Sciolla - MIT
8.022 - Lecture 6

Conclusion

- Material for Quiz \#1:
- Up to this lecture (Purcell chapters $1 / 2 / 3$)
- Next lecture:
- Charges in motion: currents
- NB: currents are not included in Quiz 1!

