Module 10: Capacitance

Capacitors and Capacitance

Our first of 3 standard electronics devices (Capacitors, Resistors \& Inductors)

Capacitors: Store Electric Charge

Capacitor: Two isolated conductors
Equal and opposite charges \pm Q
Potential difference $\Delta \mathrm{V}$ between them.

Units: Coulombs/Volt or Farads

C is Always Positive

Parallel Plate Capacitor

$$
E=?
$$

Parallel Plate Capacitor

Oppositely charged plates:
Charges move to inner surfaces to get close

Link to Capacitor Applet

Calculating E (Gauss's Law)

$$
\iiint_{\mathrm{s}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\varepsilon_{0}} \quad E\left(A_{\text {Guuss }}\right)=\frac{\sigma A_{\text {Gauss }}}{\varepsilon_{0}} \quad E=\frac{c}{\varepsilon_{0}}=\frac{Q}{A \varepsilon_{0}}
$$

Note: We only "consider" a single sheet!
Doesn't the other sheet matter?

Alternate Calculation Method

Top Sheet:

$$
\left.E=-\frac{\sigma}{2 \varepsilon_{0}} \uparrow|\uparrow| \uparrow \right\rvert\,
$$

$$
E=\frac{c}{2 \varepsilon_{0}}+\frac{c}{2 \varepsilon_{0}}=\frac{c}{\varepsilon_{0}}=\frac{Q}{A \varepsilon_{0}}
$$

Parallel Plate Capacitor

$A \mathrm{Botam}=-$

$$
C=\frac{Q}{|\Delta V|}=\frac{\varepsilon_{0} A}{d}
$$

C depends only on geometric factors A and d

Concept Question Questions:
 Changing C Dimensions

Concept Question: Changing Dimensions

A parallel-plate capacitor has plates with equal and opposite charges $\pm Q$, separated by a distance d, and is not connected to a battery. The plates are pulled apart to a distance $D>d$. What happens?

1. V increases, Q increases
2. V decreases, Q increases
3. V is the same, Q increases
4. V increases, Q is the same
5. V decreases, Q is thesame
6. V is the same, Q is the same
7. V increases, Q decreases
8. V decreases, Q decreases
9. V is the same, Q decreases

Concept Question: Changing Dimensions

A parallel-plate capacitor has plates with equal and opposite charges $\pm Q$, separated by a distance d, and is connected to a battery. The plates are pulled apart to a distance $D>d$. What happens?

1. V increases, Q increases
2. V decreases, Q increases
3. V is the same, Q increases
4. V increases, Q is the same
5. V decreases, Q is the same
6. V is the same, Q is the same
7. V increases, Q decreases
8. V decreases, Q decreases
9. V is the same, Q decreases

Demonstration: Changing C Dimensions

Capacitors: Review

Capacitor: Two isolated conductors Equal and opposite charges $\pm \mathrm{Q}$ Potential difference $\Delta \mathrm{V}$ between them.

Units: Coulombs/Volt or Farads

C is Always Positive

Group Problem: Spherical Shells

These two spherical
shells have equal
but opposite charge.

Find E everywhere

Find V everywhere (assume $\mathrm{V}(\infty)=0$)

Spherical Capacitor

Two concentric spherical shells of radii a and b

What is E ?

Gauss's Law $\rightarrow \mathrm{E} \neq 0$ only for $a<r<b$, where it looks like a point charge:

$$
\overrightarrow{\mathbf{E}}-\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Spherical Capacitor

$$
\Delta V=-\int_{\text {inside }}^{\text {outside }} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{S}}=-\int_{a}^{b} \frac{Q \hat{\mathbf{r}}}{4 \pi \varepsilon_{0} r^{2}} \cdot d r \hat{\mathbf{r}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{b}-\frac{1}{a}\right)
$$

Is this positive or negative? Why?

For an isolated spherical conductor of radius a:

$$
C=4 \pi \varepsilon_{0} a
$$

Capacitance of Earth

For an isolated spherical conductor of radius a:

$$
\begin{gathered}
C=4 \pi \varepsilon_{0} a \\
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \quad a=6.4 \times 10^{6} \mathrm{~m} \\
C=7 \times 10^{-4} \mathrm{~F}=0.7 \mathrm{mF}
\end{gathered}
$$

A Farad is REALLY BIG! We usually use $\mathrm{pF}\left(10^{-12}\right)$ or $\mathrm{nF}\left(10^{-9}\right)$

Energy Stored in Capacitor

Start charging capacitor

Energy To Charge Capacitor

1. Capacitor starts uncharged.
2. Carry +dq from bottom to top.

Now top has charge q = +dq, bottom -dq
3. Repeat
4. Finish when top has charge $q=+Q$, bottom -Q

Work Done Charging Capacitor

At some point top plate has $+q$, bottom has $-q$ Potential difference is $\Delta V=q / C$
Work done lifting another $d q$ is $d W=d q \Delta V$

Work Done Charging Capacitor

So work done to move dq is:

$$
d W=d q \Delta V=d q \frac{q}{C}=\frac{1}{C} q d q
$$

Total energy to charge to $\boldsymbol{q}=\mathbf{Q}$:

$$
\begin{gathered}
W=\int d W=\frac{1}{C} \int_{0}^{Q} q d q \\
=\frac{1}{C} \frac{Q^{2}}{2}
\end{gathered}
$$

Energy Stored in Capacitor

Since $C=\frac{Q}{|\Delta V|}$

$$
U=\frac{Q^{2}}{2 C}=\frac{1}{2} Q|\Delta V|=\frac{1}{2} C|\Delta V|^{2}
$$

Where is the energy stored???

Energy Stored in Capacitor

Energy stored in the E field!

Parallel-plate capacitor:

$$
C=\frac{\varepsilon_{o} A}{d} \text { and } V=E d
$$

$$
U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{\varepsilon_{o} A}{d}(E d)^{2}=\frac{\varepsilon_{o} E^{2}}{2} \times(A d)=u_{E} \times(\text { volume })
$$

$$
u_{E}=E \text { field energy density }=\frac{\varepsilon_{o} E^{2}}{2}
$$

Concept Question Question: Changing C Dimensions Energy Stored

Concept Question: Changing Dimensions

A parallel-plate capacitor, disconnected from a battery, has plates with equal and opposite charges, separated by a distance d.
Suppose the plates are pulled apart until separated by a distance $D>d$. How does the final electrostatic energy stored in the capacitor compare to the initial energy?

1. The final stored energy is smaller
2. The final stored energy is larger
3. Stored energy does not change.

Demonstration: Big Capacitor Exploding a Wire

MIT OpenCourseWare
|http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

