Module 11: Capacitors and Dielectrics

Demonstration: Dissectible Capacitor

Dielectrics

A dielectric is a non-conductor or insulator Examples: rubber, glass, waxed paper

When placed in a charged capacitor, the dielectric reduces the potential difference between the two plates

Molecular View of Dielectrics

Polar Dielectrics :

Dielectrics with permanent electric dipole moments Example: Water

Molecular View of Dielectrics

Non-Polar Dielectrics

Dielectrics with induced electric dipole moments Example: CH₄

Dielectric in Capacitor

Potential difference decreases because dielectric polarization decreases Electric Field!

Dielectric Constant *K*

Dielectric <u>weakens</u> original field by a factor K

 $\mathcal{E} = \mathcal{K}\mathcal{E}_0$ E Dielectric Constant **Dielectric constants** Vacuum 1.0 3.7 Paper Pyrex Glass 5.6 Water 80

Dielectric in a Capacitor

Q₀= constant after battery is disconnected


```
Upon inserting a dielectric: V = \frac{V_0}{\kappa}

C = \frac{Q}{V} = \frac{Q_0}{V_0 / \kappa} = \kappa \frac{Q_0}{V_0} = \kappa C_0
```

Dielectric in a Capacitor

V₀ = constant when battery remains connected

 $Q = CV = \kappa C_0 V_0$

Upon inserting a dielectric: $Q = \kappa Q_0$

Concept Question Questions: Dielectric in a Capacitor

Concept Question: Dielectric

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ in inserted between the plates. The **charge** stored in the capacitor

Concept Question: Dielectric

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ in inserted between the plates. The **energy** stored in the capacitor

3. Stays the Same

Concept Question: Dielectric

A parallel plate capacitor is charged to a total charge Q and the battery removed. A slab of material with dielectric constant κ in inserted between the plates. The **force on the dielectric**

- 1. pulls in the dielectric
- 2. pushes out the dielectric
- 3. is zero

Problem: Partially Filled Capacitor

What is the capacitance of this capacitor?

Gauss's Law with Dielectrics

 $\vec{\mathbf{KE}} \cdot \vec{dA} = \frac{q_{\text{free,in}}}{q_{\text{free,in}}}$

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.