Module 15: DC Circuits with Capacitors

1

Modules 15: Outline

Capacitors in Series and Parallel RC Circuits Expt 4: RC Circuits

DC Circuits with Capacitors

Sign Conventions - Capacitor

Moving across a capacitor from the negatively to positively charged plate **increases** your potential

Capacitors in Parallel

Capacitors in Parallel

Equivalent Capacitance

Capacitors in Series

Capacitors in Series

Equivalent Capacitance

Concept Question Question: Capacitors in Series and Parallel

Concept Question: Capacitors

Three identical capacitors are connected to a battery.

The battery is then disconnected. How do the charge on A, B & C compare before and after the battery is removed?

3. $Q_{\Delta} = Q_{B} = Q_{C};$

4. $Q_{\Delta} > Q_{B} = Q_{C};$

5. $Q_A > Q_B = Q_C;$

6. $Q_{\Delta} < Q_{B} = Q_{C};$

7. $Q_{\Delta} < Q_{B} = Q_{C};$

$\frac{\text{BEFORE};}{\text{AFTER}}$ 1. $Q_A = Q_B = Q_C;$ No Cl 2. $Q_A = Q_B = Q_C;$ $Q_A >$

No Change $Q_A > Q_B = Q_C$ $Q_A < Q_B = Q_C$ No Change $Q_A = Q_B = Q_C$ No Change $Q_A = Q_B = Q_C$

Power - Capacitor

Moving across a capacitor from the positive to negative plate **decreases** your potential. If current flows in that direction the capacitor **absorbs** power (stores charge)

RC Circuits

 (Dis)Charging a Capacitor
 When the direction of current flow is toward the positive plate of a capacitor, then

2. When the direction of current flow is away from the positive plate of a capacitor, then

$$I = -\frac{dQ}{dt}$$
C
Discharging
-Q

Charging A Capacitor

What happens when we close switch S?

RC Circuit

$$\frac{dQ}{dt} = -\frac{1}{RC} (Q - C\varepsilon)$$

Solution to this equation when switch is closed at t = 0:

$$Q(t) - C \mathcal{E} \left(1 - e^{-t/\tau} \right)$$

 $\tau = RC$: time constant

(units: seconds)

Solve Diferential Equation for Charging RC Circuits

Concept Question Question: Current in RC Circuit

Concept Question: RC Circuit

An uncharged capacitor is connected to a battery, resistor and switch. The switch is initially open but at t = 0 it is closed. A very long time after the switch is closed, the current in the circuit is

- 1. Nearly zero
- 2. At a maximum and decreasing
- 3. Nearly constant but non-zero
- 4. I don't know

Concept Question: RC Circuit

Consider the circuit at right, with an initially uncharged capacitor and two identical resistors. At the instant the switch is closed:

$$\begin{array}{c|c}
S & E & R \\
\hline I_C & C \\
\hline I_R & R
\end{array}$$

1.
$$I_{R} = I_{C} = 0$$

2. $I_{R} = \epsilon/2R; |_{C} = 0$
3. $I_{R} = 0; |_{C} = \epsilon/R$
4. $I_{R} = \epsilon/2R; |_{C} = \epsilon/R$
5. I don't know

Charging A Capacitor

 $Q = C \mathcal{E} \left(1 - e^{-t/RC} \right)$

 $I = \frac{dQ}{dt} = \frac{\mathcal{E}}{\mathcal{P}} e^{-t/RC}$

Discharging A Capacitor

What happens when we close switch S?

Discharging A Capacitor

Demonstrations: RC Time Constants

Problem: Circuits

For the above circuit sketch the currents through the two bottom branches as a function of time (switch closes at t = 0, opens at t = T). State values at $t = 0^+$, T^- , T^+ Concept Question Questions: RC Circuit

Concept Question: RC Circuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

- 1. It stays the same
- 2. Same magnitude, flips direction
- 3. It is cut in half, same direction
- 4. It is cut in half, flips direction
- 5. It doubles, same direction
- 6. It doubles, flips direction
- 7. None of the above

Concept Question: Current Thru Capacitor

In the circuit at right the switch is closed at t = 0. At $t = \infty$ (long after) the *current through the capacitor* will be:

1.
$$I_c = 0$$

2. $I_c = \varepsilon/R$
3. $I_c = \varepsilon/2R$
4. I don't known

Concept Question: Current Thru Resistor

In the circuit at right the switch is closed at t = 0. At $t = \infty$ (long after) the *current through the lower resistor* will be:

1.
$$I_R = 0$$

2. $I_R = \varepsilon/R$
3. $I_R = \varepsilon/2R$
4. I don't known

Concept Question: Opening Switch in RC Circuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

- 1. It stays the same
- 2. Same magnitude, flips direction
- 3. It is cut in half, same direction
- 4. It is cut in half, flips direction
- 5. It doubles, same direction
- 6. It doubles, flips direction
- 7. None of the above.

Experiment 4: RC Circuits

- 1. Hook in SERIES: current must go thru to measure
- 2. "Positive" if runs from Red to Black
- 3. Note: Not ideal 1 Ω resistance. Does it matter?

- 1. Hook in PARALLEL: reads V_{Red} V_{Black}
- 2. Note: Not ideal 1 M Ω resistance. Does it matter?

Expt. 4, Part I: RC Circuits

- Download and run Lab 4
- Build an RC circuit:
- Measure current thru and voltage across capacitor
- As battery 'turns on and off,' what happens to the capacitor? WHY?

Concept Question: Voltage/Current in RC

Starting from a point in time where the voltage across the battery (V_B) & across the capacitor (V_C) as well as the current (I) are all zero, what happens when the battery is 'turned on'?

- 1. I jumps up then decays as V_C rises
- 2. V_C jumps up then decays as I rises
- 3. I & V_C both jump up then decay
- 4. I & V_C both gradually rise
- 5. I don't know

Expt. 4, part II: RC Circuits

- Same RC circuit
- Determine the resistance
- Measure the time constant to determine the capacitance
- You have a 2nd identical resistor. Where do you put it to make the TC as SHORT as possible?

RC Circuit

t=0⁺: Capacitor is uncharged so resistor sees full battery potential and current is largest
t=∞: Capacitor is "full." No current flows

Measuring Time Constant

$$Value(t) = Value_0 e^{-t/t}$$

How do you measure τ ?

- a) Pick a point
 b) Find point with
 "value" down by e
 - c) Time difference is τ
- Plot semi-log and fit
 curve (make sure you
 exclude data at both
 ends)

Read instructions about cursors. Right click to fit

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.