Module 15: DC Circuits with Capacitors

Modules 15: Outline

Capacitors in Series and Parallel
RC Circuits
Expt 4: RC Circuits

DC Circuits with Capacitors

Sign Conventions - Capacitor

Moving across a capacitor from the negatively to positively charged plate increases your potential

$$
\Delta V=+Q / C
$$

$$
\Delta V=V_{b}-V_{a}
$$

$$
\Delta V=-Q / C
$$

Think:

Ski Lodge

Capacitors in Parallel

Capacitors in Parallel

Equivalent Capacitance

Capacitors in Series

Capacitors in Series

Equivalent Capacitance

Concept Question Question: Capacitors in Series and Parallel

Concept Question: Capacitors

Three identical capacitors are connected to a battery.
The battery is then disconnected. How do the charge on $A, B \& C$ compare before and after the battery is removed?

BEFORE;

1. $Q_{A}=Q_{B}=Q_{C} ; \quad$ No Change
2. $Q_{A}=Q_{B}=Q_{C} ; \quad Q_{A}>Q_{B}=Q_{C}$
3. $Q_{A}=Q_{B}=Q_{C} ; \quad Q_{A}<Q_{B}=Q_{C}$
4. $Q_{A}>Q_{B}=Q_{C} ; \quad$ No Change
5. $Q_{A}>Q_{B}=Q_{C} ; \quad Q_{A}=Q_{B}=Q_{C}$
6. $Q_{A}<Q_{B}=Q_{C} ; \quad$ No Change
7. $Q_{A}<Q_{B}=Q_{C} ; \quad Q_{A}=Q_{B}=Q_{C}$

Power - Capacitor

Moving across a capacitor from the positive to negative plate decreases your potential. If current flows in that direction the capacitor absorbs power (stores charge)

$P_{\text {absorbed }}=I \Delta V=\frac{d Q}{d t} \frac{Q}{C}=\frac{d}{d t} \frac{Q^{2}}{2 C}=\frac{d U}{d t}$

Exponential Decay

Consider function A whe
A decays exponentially:

$$
\frac{d A}{d t}=-\frac{1}{\tau} A
$$

RC Circuits

(Dis)Charging a Capacitor

1. When the direction of current flow is toward the positive plate of a capacitor, then

$$
I=+\frac{d Q}{d t}
$$

Charging

2. When the direction of current flow is away from the positive plate of a capacitor, then

$$
I=-\frac{d Q}{d t}
$$

Charging A Capacitor

What happens when we close switch S?

Charging A Capacitor

$$
\sum_{i} \Delta V_{i}=\varepsilon-\frac{Q}{C}-\frac{d Q}{d t} R=0
$$

RC Circuit

$$
\frac{d Q}{d t}=-\frac{1}{R C}(Q-C \varepsilon)
$$

Solution to this equation when switch is closed at $\mathrm{t}=0$:

$$
Q(t)-C \mathcal{E}\left(1-e^{-t / \tau}\right)
$$

$$
\tau=R C: \text { time constant }
$$

(units: seconds)

Solve Diferential Equation for Charging RC Circuits

Concept Question Question: Current in RC Circuit

Concept Question: RC Circuit

An uncharged capacitor is connected to a battery, resistor and switch. The switch is initially open but at $t=0$ it is closed. A very long time after the switch is closed, the current in the circuit is

1. Nearly zero
2. At a maximum and decreasing
3. Nearly constant but non-zero
4. I don't know

Concept Question: RC Circuit

Consider the circuit at right, with an initially uncharged capacitor and two identical resistors. At the instant the switch is closed:

$$
\begin{aligned}
& \text { 1. } I_{R}=I_{C}=0 \\
& \text { 2. } I_{R}=\varepsilon / 2 R ; \quad I_{C}=0 \\
& \text { 3. } I_{R}=0 ; I_{C}=\varepsilon / R \\
& \text { 4. } I_{R}-\varepsilon / 2 R ; \quad I_{C}-\varepsilon / R
\end{aligned}
$$

5. I don't know

Charging A Capacitor

$$
Q=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

$$
I=\frac{d Q}{d t}=\frac{\mathcal{E}}{R} e^{-t / R C}
$$

Discharging A Capacitor

What happens when we close switch S?

Discharging A Capacitor

RC Circuit: Discharging

$$
\frac{d Q}{d t}=-\frac{1}{R C} Q
$$

Solution to this equation when switch is closed at $\mathrm{t}=0$:

$$
Q(t)=Q_{o} e^{-t / \tau}
$$

$\tau=R C$: time constant

Demonstrations: RC Time Constants

Problem: Circuits

For the above circuit sketch the currents through the two bottom branches as a function of time (switch closes at $t=0$, opens at $t=T$). State values at $t=0^{+}, T^{-}, T^{+}$

Concept Question Questions: RC Circuit

Concept Question: RC Cirçuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

1. It stays the same
2. Same magnitude, flips direction
3. It is cut in half, same direction
4. It is cut in half, flips direction
5. It doubles, same direction
6. It doubles, flips direction
7. None of the above

Concept Question: Current Thru Capacitor

 In the circuit at right the switch is closed at $t=0$. At $t=\infty$ (long after) the current through the capacitor will be:

$$
\begin{aligned}
& \text { 1. } I_{C}=0 \\
& \text { 2. } I_{C}=\varepsilon / R \\
& \text { 3. } I_{C}=\varepsilon / 2 R \\
& \text { 4. } \text { I don't know }
\end{aligned}
$$

Concept Question: Current Thru Resistor

 In the circuit at right the switch is closed at $t=0$. At $t=\infty$ (long after) the current through the lower resistor will be:1. $I_{R}=0$
2. $I_{R}=\varepsilon / R$
3. $I_{R}=\varepsilon / 2 R$
4. I don't know

Concept Question: Opening Switch in RC Circuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

1. It stays the same

2. Same magnitude, flips direction
3. It is cut in half, same direction
4. It is cut in half, flips direction
5. It doubles, same direction
6. It doubles, flips direction
7. None of the above.

Experiment 4: RC Circuits

Measuring Current (THRU)

1. Hook in SERIES: current must go thru to measure
2. "Positive" if runs from Red to Black
3. Note: Not ideal - 1Ω resistance. Does it matter?

Measuring Voltage (ACROSS)

1. Hook in PARALLEL: reads $\mathrm{V}_{\text {Red }}-\mathrm{V}_{\text {Black }}$
2. Note: Not ideal - $1 \mathrm{M} \Omega$ resistance. Does it matter?

Expt. 4, Part I: RC Circuits

- Download and run Lab 4
- Build an RC circuit:
- Measure current thru and voltage across capacitor
- As battery 'turns on

Battery
 and off,' what happens to the capacitor? WHY?

Concept Question: Voltage/Current in RC

Starting from a point in time where the voltage across the battery $\left(\mathrm{V}_{\mathrm{B}}\right)$ \& across the capacitor $\left(\mathrm{V}_{\mathrm{C}}\right)$ as well as the current (I) are all zero, what happens when the battery is 'turned on'?

1. I jumps up then decays as V_{C} rises
2. V_{C} jumps up then decays as I rises
3. I \& V_{C} both jump up then decay
4. $\mathrm{I} \& \mathrm{~V}_{\mathrm{C}}$ both gradually rise
5. I don't know

Expt. 4, part II: RC Circuits

- Same RC circuit
- Determine the resistance
- Measure the time constant to determine the capacitance
- You have a $2^{\text {nd }}$ identical

Battery
 resistor. Where do you put it to make the TC as SHORT as possible?

RC Circuit

$\mathrm{t}=0^{+}$: Capacitor is uncharged so resistor sees full battery potential and current is largest
$t=\infty$: Capacitor is "full." No current flows

Measuring Time Constant

Value $(t)=$ Value $_{0} e^{-t / \tau}$

How do you measure τ ?

1) a) Pick a point
b) Find point with
"value" down by e
c) Time difference is τ
2) Plot semi-log and fit curve (make sure you exclude data at both ends)

Read instructions about cursors. Right click to fit

MIT OpenCourseWare
|http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

