Concept Question: Capacitors

Three identical capacitors are connected to a battery.

The battery is then disconnected. How do the charge on A, B & C compare before and after the battery is removed?

BEFORE;AFTER1. $Q_A = Q_B = Q_C$;No Cl2. $Q_A = Q_B = Q_C$; $Q_A > Q_A$ 3. $Q_A = Q_B = Q_C$; $Q_A < Q_A$ 4. $Q_A > Q_B = Q_C$;No Cl5. $Q_A > Q_B = Q_C$; $Q_A = Q_A$ 6. $Q_A < Q_B = Q_C$;No Cl

7. $Q_{\Delta} < Q_{B} = Q_{C};$

No Change $Q_A > Q_B = Q_C$ $Q_A < Q_B = Q_C$ No Change $Q_A = Q_B = Q_C$ No Change $Q_A = Q_B = Q_C$

Concept Question Answer: Capacitors

Answer: 4. $Q_A > Q_B = Q_C$; No Change

Initially:

Potential across A is sum of drops across B & C.

By symmetry
$$V_B = V_C \rightarrow V_A > V_B = V_C$$

 $Q = CV \rightarrow Q_A > Q_B = Q_C$

When battery is disconnected

There is no reason for the potential to change or charge to flow so it doesn't.

Concept Question: RC Circuit

An uncharged capacitor is connected to a battery, resistor and switch. The switch is initially open but at t = 0 it is closed. A very long time after the switch is closed, the current in the circuit is

- 1. Nearly zero
- 2. At a maximum and decreasing
- 3. Nearly constant but non-zero
- 4. I don't know

Concept Question Answer: RC Circuit

Answer: 1. After a long time the current is 0

Eventually the capacitor gets "full" – the voltage increase provided by the battery is equal to the voltage drop across the capacitor. The voltage drop across the resistor at this point is 0 - no current is flowing.

Concept Question: RC Circuit

Consider the circuit at right, with an initially uncharged capacitor and two identical resistors. At the instant the switch is closed:

$$\begin{array}{c|c}
S & E & R \\
\hline I_C & C \\
\hline I_R & R \\
\end{array}$$

1.
$$I_{R} = I_{C} = 0$$

2. $I_{R} = \varepsilon/2R; \quad I_{C} = 0$
3. $I_{R} = 0; \quad I_{C} = \varepsilon/R$
4. $I_{R} = \varepsilon/2R; \quad I_{C} = \varepsilon/R$
5. I don't know

Concept Question Answer: RC Circuit

Answer: 3.
$$I_R = 0$$
; $I_C = \epsilon/R$

Initially there is no charge on the capacitor and hence no voltage drop across it – it looks like a short. Thus all current will flow through it rather than through the bottom resistor. So the circuit looks like: S

Concept Question: RC Circuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

- 1. It stays the same
- 2. Same magnitude, flips direction
- 3. It is cut in half, same direction
- 4. It is cut in half, flips direction
- 5. It doubles, same direction
- 6. It doubles, flips direction
- 7. None of the above

Concept Question Answer: RC Circuit Answer: 1. It stays the same

The capacitor has been charged to a potential of $\varepsilon/2$, so when it is responsible for pushing current through the lower resistor it pushes a current of $\varepsilon/2R$, in the same direction as before (its positive terminal is also on the left)

Concept Question: Current Thru Capacitor

In the circuit at right the switch is closed at t = 0. At $t = \infty$ (long after) the *current through the capacitor* will be:

1.
$$I_c = 0$$

2. $I_c = \varepsilon/R$
3. $I_c = \varepsilon/2R$
4. I don't know

Concept Question Answer: I Thru Capacitor

Answer: 1.
$$I_c = 0$$

After a long time the capacitor becomes "fully charged." No more current flows into it.

Concept Question: Current Thru Resistor

In the circuit at right the switch is closed at t = 0. At $t = \infty$ (long after) the current through the lower resistor will be:

1.
$$I_R = 0$$

2. $I_R = \varepsilon/R$
3. $I_R = \varepsilon/2R$
4. I don't know

Concept Question Answer: I Thru Resistor

Answer: 3.
$$I_R = \varepsilon/2R$$

Since the capacitor is "full" we can remove it from the circuit, and all that is left is the battery and two resistors. So the current is $\varepsilon/2R$.

Concept Question: Opening Switch in RC Circuit

Now, after the switch has been closed for a very long time, it is opened. What happens to the current through the lower resistor?

- 1. It stays the same
- 2. Same magnitude, flips direction
- 3. It is cut in half, same direction
- 4. It is cut in half, flips direction
- 5. It doubles, same direction
- 6. It doubles, flips direction
- 7. None of the above.

Concept Question Answer: Opening Switch

Answer: 1. It stays the same

The capacitor has been charged to a potential of $\varepsilon/2$, so when it is responsible for pushing current through the lower resistor it pushes a current of $\varepsilon/2R$, in the same direction as before (its positive terminal is also on the left)

Concept Question: Voltage/Current in RC

Starting from a point in time where the voltage across the battery (V_B) & across the capacitor (V_C) as well as the current (I) are all zero, what happens when the battery is 'turned on'?

- 1. I jumps up then decays as V_C rises
- 2. V_C jumps up then decays as I rises
- 3. I & V_C both jump up then decay
- 4. I & V_C both gradually rise
- 5. I don't know

Concept Question Answer: V/I in RC

Answer: 1. I jumps up, then decays as V_C rises

I is proportional to the voltage across the resistor $(V_R = I R)$. $V_R + V_C = V_B$. So as V_C increases V_R must decay, meaning that I must decay.

But why does V_C take time to rise up, while V_R , V_B can jump up quickly?

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.