Electric Fields and Continuous Charge Distributions Challenge Problems

Problem 1:

Two thin, semi-infinite rods lie in the same plane. They make an angle of 45° with each other and they are joined by another thin rod bent along an arc of a circle of radius R , with center at P . All the rods carry a uniform charge distribution of $\lambda[\mathrm{C} / \mathrm{m}]$. Find the electric field at point P.

Problem 2:

A positively charged wire is bent into a semicircle of radius R, as shown in the figure below.

The total charge on the semicircle is Q. However, the charge per unit length along the semicircle is non-uniform and given by $\lambda=\lambda_{0} \cos \theta$.
a) What is the relationship between λ_{0}, R and Q ?
b) If a particle with a charge q is placed at the origin, what is the total force on the particle? Show all your work including setting up and integrating any necessary integrals.

Problem 3:

A cylindrical tube of length L, radius R carries a charge Q uniformly distributed over its outer surface. Find the electric field on the axis of the tube at one of its ends.

Problem 4:

A hemispherical Plexiglas shell of radius R carries a charge Q uniformly distributed over its surface.
(a) Find the electric field at the "center" of the hemisphere (that is, the center of the sphere from which the hemisphere was cut). HINT: You may be tempted to use the "Ring of Charge" result from class. It's actually much easier to just figure out what $d q$ is, parameterizing your location of the hemisphere with θ and ϕ.

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

