
Electric Fields and Continuous Charge Distributions 
Challenge Problem Solutions 

 
Problem 1:   
 
Two thin, semi-infinite rods lie in the same plane.  They make an angle of 45º with each 
other and they are joined by another thin rod bent along an arc of a circle of radius R, 
with center at P.  All the rods carry a uniform charge distribution of λ [C/m].  Find the 
electric field at point P.  
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Problem 1 Solution:   
 
At first glance this is an ugly problem because the lines are at an angle so you might think 
that choosing an integration variable is going to be difficult.  But we can easily break this 
problem into two parts:  a semi infinite line of charge and an arc of charge.  We’ll do 
these problems individually and then superimpose the results. 
 
Semi-Infinite Line of Charge 

 
The point we want to calculate the field at is a distance R above the end of our semi-
infinite rod, as pictured above.  The field from the small charge segment (length dx) is: 
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There are two different integrals in the x-direction (where we can simply use u-
substitution with u x2 2R= + ) and y-directions (where we will need to use trig. 
substitution tanx R θ= ) so separate the components: 
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Neat, huh?  Two very different integrals, same result.  So the electric field points at 45º at 

point P (up and to right) with total amplitude 2 2
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Arc of Charge 

 
This one is a little easier.  By symmetry we know we only have to look at the x-
component (the y-components will cancel).  Plus we are always a distance R away from 

oint P.  So for a little arc-length Rdθ, we have 
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Integrating (from θ = 0 º to 67.5º and then doubling): 
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Putting it Together 
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Drawing our three E field vectors, it is clear that the vertical 
components of from the lines will cancel as well, so we only 
need the horizontal component.  I’ll figure it out for the bottom 
line and double it.  Since the line is rotated down by 22.5º (half 
of the 45º between the lines), the E field angle is rotated from 
45º to 67.5º.  We want the horizontal component of that: 
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Problem 2: 
 
A positively charged wire is bent into a semicircle of radius R , as shown in the figure 
below. 

                  
 
The total charge on the semicircle is . However, the charge per unit length along the 
semicircle is non-uniform and given by 

Q

0 cosλ λ θ= .   
 

a) What is the relationship between 0λ , R  and ?  Q
 

b) If a particle with a charge q is placed at the origin, what is the total force on the 
particle? Show all your work including setting up and integrating any necessary 
integrals. 

 
Problem 2 Solution:  
 
(a) In order to find a relation between 0λ , R   and   it is necessary to integrate the 
charge density 

Q
λ  because the charge distribution is non-uniform 
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(b) The force on the charged particle at the center  of the semicircle is given by P
 

( ) ( )P q P=F E . 
 
The electric field at the center  of the semicircle is given by P
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The unit vector, , located at the field point,  is directed from the source to the field point 
and in Cartesian coordinates is given by 
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ˆ ˆˆ sin cosθ θ′ ′= − −r i j . 
Therefore the electric field at the center  of the semicircle is given by P
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There are two separate integrals for the x  and components. The y x -component of the  
electric field at the center  of the semicircle is given by P
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We expected this result by the symmetry of the charge distribution about the y-axis. 
 
The y -component of the electric field at the center  of the semicircle is given by P
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Therefore the force on the charged particle at the point  is given by P
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Problem 3:   
A cylindrical tube of length L, radius R carries a charge Q uniformly distributed over its 
outer surface.  Find the electric field on the axis of the tube at one of its ends. 
 
Problem 3 Solution:  
 
We will find the electric field at one end of the cylinder by dividing the cylinder into 
small charge elements  and then using the fact that the electric field at a field point P 
due to the small element is given by 

dq′
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In the above expression,  is the distance between the charged element and the field 
point, and   is the unit vector at the field point, pointing from the charged element to the 
field point. 

r
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To find the field, we then integrate over the surface of the cylinder. 
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Methodology: We need to define dq′ , , and  with respect to a coordinate system and 
then set up the integrand. Since the charge is evenly distributed over the surface of the 
cylinder, the area charge density is given by  
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We first start by using cylindrical coordinates ( , , )R zϕ′ ′  to describe the cylinder. We 
choose the z-axis to run along the symmetry axis of the cylinder and we locate the top 
and bottom of the cylinder at the points 0z′ =  and z L′ = .  
 

 
 

 



We locate the area element at the point ( , , )R zϕ′ ′ . Note that ( , )zϕ′ ′  are the integration 
variables. (Note that is the reason we prime these coordinates.) 
A small area element is given by 
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where Rdϕ′  is a small arc length, and dz′  is the small length (infinitesimal) along the 
vertical z-axis. 
 
For the moment we locate the field point along the z-axis at (0 . Notice that the 
variable is unprimed because it is the field point. If we want to find the field at either 
end of the cylinder we will substitute 

, 0, )z
z

0z =  or z L=  at the end of our calculation. 
 
The distance  between the charged element and the field point in these coordinates is 
given by  

r
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By symmetry as we integrate the charged element around the z-axis, only the component 
along the z-axis will be non-zero. This means that we only need to decompose the 
vertical component of the unit vector (we denote this by ). Let ˆzr θ denote the angle  
makes with a horizontal line, then the vertical component is given by 
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Then  
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We can now integrate this expression: 
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The first integral with respect to dϕ′  is easy because the integrand is independent of ϕ′ , 
and so the integral is just 2π . 
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Notice that 2 Rdzπσ ′  is the charge on a ring of radius R  and “width”  along the z-
axis.  

dz′

 
So the integrand is really the contribution that a ring located at z′  makes to z-component 
of the electric field at the point  along the z-axis. z
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We now perform the -integral. We can make a change of variables z′ 2 2( ( )u R z z′= + − . 
Then  

2( )du z z′= − − . The end points are now integrand 2u R z2= +  and  . 
The integral is then  
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Substituting in the endpoints we arrive at 
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The problem asked to find the electric field at the ends of the cylinder,  or . At 

the end , we have that using 
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0z = 01/ 4k πε=  and 2 QR
L

πσ =  

 

2 2 1/ 2 2 2 1/ 2
0

1 1 1 1ˆ ˆ( 0) 2
( ) 4 ( )z

Qz Rk
R L R L R L R

πσ
πε

⎛ ⎞ ⎛ ⎞
= = − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

E k k . 

 
Notice that the second term in the parenthesis is greater than the first term so the field 
point in the direction.  ˆ−k
 
At , the field is given by z L=
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which has the same magnitude as the field at 0z =  but points in the ˆ+k direction. 

 



Problem 4: 
 
A hemispherical Plexiglas shell of radius R carries a 
charge Q uniformly distributed over its surface. 
 
(a) Find the electric field at the “center” of the  
hemisphere (that is, the center of the sphere from 

which the hemisphere was cut).  HINT:  You may 
be tempted to use the “Ring of Charge” result from 
class.   It’s actually much easier to just figure out 
what dq is, parameterizing your location of the 
hemisphere with θ and φ. 

 
Solution: 
 
Charge is evenly distributed over the surface of the hemisphere, so the charge density: 
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Now we need to calculate the electric field.  As told in the hint we should just use 
spherical coordinates and write out dq:  ( )( ) 2sin sindq R d Rd R d dσ θ ϕ θ σ θ ϕ θ= =   
Why is this easier?  Because all dq’s are the same distance R away from the origin, which 
we would lose sight of if we moved to working with rings.  We also simplify our task of 
calculating the E field by realizing that, by symmetry, only the z-component survives: 
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(a) 
0

ˆ
4
σ
ε

= −E k , where the direction is using the convention I’ve chosen above.  You 

were welcome to label your axes as you preferred, but clearly if the hemisphere is 
positively charged the electric field will point away from it at the origin. 
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