
 

Electric Fields, Dipoles and Torque 
Challenge Problem Solutions 

 
Problem 1: 
 

Three charges equal to –Q, +Q and +Q are 
located a distance a apart along the x axis (see 
sketch).  The point P is located on the positive 
y-axis a distance a from the origin.   
 
(a) What is the electric field E  at point P? 

 
 
 

(b) _(f)_  (enter one letter) is the correct field  line representation for this problem   

 
 

 
Problem 1 Solution:   
 
(a) If we number the charges from left to right, then at point P, the E field due to the charges are 
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_(f)_  is the correct field  line representation for this problem   
You can tell this because the center and leftmost charges are of opposite signs (field 
lines start on one and end on the other), while the center and rightmost charges are of the 
same sign (their field lines repel each other). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Problem 2: 
 
Consider three point charges located at the corners of an equilateral triangle, as shown in 
figure. Calculate the resultant electric force on the 7.00-μC charge.  Be sure to specify 
both the magnitude and direction.  
 

 
 
 
 
Problem 2 Solution: 
 
Consider three point charges located at the corners 
of an equilateral triangle, as shown in figure below. 
Calculate the resultant electric force on the 7.00-μC 
charge.  Be sure to specify both the magnitude and 
direction.  
 
Let ,  and 1 2.00µCq = 2 4.00µCq = − 3 7.00µCq = . 
Using Coulomb’s law, the magnitudes of the forces 
exerted on  are  3q
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In Cartesian coordinates, the forces can be written as 
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The total force is 
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The magnitude of F  is  
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Problem 3: 
 
Cesium Chloride is a salt with a crystal structure in which cubes of Cs+ ions 
(side length a ~ 0.4 nm) surround Cl- ions, as pictured at right.  
 
(a) What is the magnitude of the net electrostatic force on the Cl- ion due to 

its eight nearest neighbor Cs+ ions? 
 

(b) Occasionally defects arise in which one of the Cs+ ions is 
missing. We call this a vacancy. In this case, what is the 
magnitude and direction (relative to the vacancy) of the net 
electrostatic force on the Cl- ion due to its remaining seven  

 
 
Problem 3 Solution: 
 
(a) By symmetry the electrostatic force from each Cs+ ion is cancelled by its partner 
opposite the Cl- ion, so the net force is zero. 
 
 
(b) Taking away a Cs+ ion to create a vacancy is, electronically, the same thing as adding 
a negative charge to the system at the location of the vacancy (this will cancel out the 
positive charge of the ion, essentially removing it). This negative charge, q = -e, will 

create a repulsive force on the Cl- ion, a distance ( )23 2d a=  away, of magnitude: 
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Problem 4:  
One version of an electroscope consists of two small conducting balls of mass m hanging 
on long strings of length L.  If a charge 2q is transferred to the system (so each ball 
acquires the same charge q), they will repel. 
 
(a) Neglecting gravitational attraction between the balls, by what distance x do they 

move apart when charged? 
(b) Is it reasonable to ignore this gravitational attraction?  More precisely, if we were to 

put a very small charge, say one electron, on each of the balls, how light would the 
balls have to be before we could ignore gravitational attraction between them? Could 
we make the balls that light? 

 
Problem 4 Solution: 

L

x 

 
(a) To do this analysis we return to our methods of 8.01 and draw a free 
body diagram for the left mass, where the forces are gravity (down), 
electrostatic force (left) and tension in the string (up and to the left): 
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Since the ball is not accelerating, we know that the forces 
in both the horizontal and vertical directions must cancel: 
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where we have used the small angle approximation that tan sinθ θ≈ , which is valid 
when the length of the string L is long (relative to the separation x), which we are told it 
is.  Continuing: 
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.  
Let’s just calculate for a fraction f of the electrostatic force, and we can go from there. 

 
 
(b) This question is a little vague (intentionally). How small does something need to be so 
that we can ignore it?  A 1% effect? 0.1%? It really depends on what we are trying to do
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For a single electron charge we find the mass would need to obey: 
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That is pretty small.  We probably aren’t justified in ignoring gravity in this case.  But 
put on a million electrons so we are up near a gram and this becomes reasonable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Problem 5: 
Two massless point charges +9Q and -Q are fixed on the x-axis at x = -d and x = d: 
 

 
 
(a) There is one point on the x-axis, x = x0, where the electric field is zero. What is x0? 
 
(b) A third point charge q of mass m is free to move along the x-axis. What force does it 

feel if it is placed at x = x0 (the location you just found)? 
 
(c) Now q is displaced along the x-axis by a small distance a to the right. What sign of 

charge should q be so that it feels a force pulling it back to x = x0? 
 
(d) Show that if a is small compared to d (a << d) q will undergo simple harmonic 

motion. Determine the period of that motion. [NOTE: The motion of an object is 
simple harmonic if its acceleration is proportional to its position, but oppositely 
directed to the displacement from equilibrium. Mathematically, the equation of 
motion can be written as 2 2 2/d x dt xω= − , where ω  is the angular frequency. See 
Review Module E for more detail. HINT: a/d is REALLY SMALL. Taylor expand]  

 
(e) How fast will the charge q be moving when it is at the midpoint of its periodic 

motion? 
 
Problem 5 Solution: 
 
Two point charges 9Q and -Q are fixed on the x-axis at x = -d and x = d respectively.  
 
(a) The charges are of opposite sign, so the field zero is not between them but to one side 

or the other.  Since the 9Q charge at x = -d is bigger, the zero will be to the right of 
the -Q charge (x0 > d).  Now we can solve: 
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(b) Since F  and , the charge feels no force at x = xq= ( )0 0x =E 0. 
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(c) To the right of x = x0 = 2d the 9Q charge will dominate the -Q charge.  You can see 
this most clearly if you go a far distance to the right.  Looking back at the two charges 
they will appear as a single 8Q charge.  In order to be attracted back to the net 
positive charge, q must be negative. 

 
(d) To show that the motion is simple harmonic we have to show that the acceleration of 

(and hence force on) q is proportional to its displacement.  The force on it at x =  2d + 
a is:  
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Now we have to make use of the approximation that a << d.  The usual way to make use 
of such conditions is to make a small number out of the ratio (a/d << 1).  So: 
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where we have factored out 3d from the first denominator and d from the second.  Now 
we can do a Taylor expansion, keeping just the first order term: ( ) 21 1 2x x−+ ≈ −  
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Since the acceleration is proportional to the displacement (a) but oppositely directed 
(recall that q is negative), we conclude that the motion of q is simple harmonic with  
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(e) Since ω  is the angular frequency of q, we can describe the position of q, ( )x t , to be 

 ( ) ( )2 cosx t d a tω= +   

To find the velocity, , we just differentiate x with respect to t: ( )v t
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which is the speed of q at the midpoint of its motion (x = d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem 6:  

 



 
Consider two equal but opposite charges, both mass m, on the x-axis, +Q at (a,0) and –Q 
at (-a,0).  They are connected by a rigid, massless, insulating rod whose center is fixed to 
a frictionless pivot at the origin.  This is a dipole.  A uniform field ˆE=E i  is now applied. 
 
(a) What is the force on the dipole due to this external field? 
 
Now the dipole is rotated and held at a small angle θ0 (c.c.w.) from the x-axis. 
 
(b) Now what is the force on the dipole? 
 
(c) How much did the potential energy of the dipole change when it was rotated? 
 
(d) What is the torque on the dipole? 
 
(e) Now the dipole is released and allowed to rotate due to this torque.  Describe the 

motion that it undergoes (i.e. what is its angle θ(t)?) 
 
 (f) Where is the positive charge when it is moving the fastest?  How fast is it moving? 
 
 
Problem 6 Solution:  
 
(a) A dipole in a uniform field feels no force (the force on the positive charge is equal 

and opposite to the negative charge). 
 
(b) The field is still uniform so the force is still zero. 
 
(c) The change in potential energy of a charge q is given by: 

B
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For example, our positive charge changes its potential energy by: 
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Similarly, the negative charge moves from θ = π to θ = π + θ0, changing its energy by: 
( )( ) ( )( ) ( )0 0cos cos 1 cos 1 cosU QEa QEa QEa 0π π θ θ θΔ = − − − = − − + = −  

 
So both charges change their potential energy by the same, and the total change in the 
dipole’s potential energy is: ( )02 1 cosdipoleU QEa θΔ = −  

Note that we could write this as follows:  
( ) ( )0 02 cos cos0 cos cos0dipole final initU QEa pE Uθ θΔ = − − = − − = −U  

 



and hence the potential energy of a dipole is dipoleU = − ⋅p E  
 
(d) From class we had that the torque is given by 

0sinpEτ θ= × ⇒ =τ p E  
Note that one can actually derive this from the potential energy.  Just as the force is the 
derivative of the potential energy with respect to position, the torque is its derivative with 

respect to angle: ( )cos sinpE pEτ θ θ
θ
∂

= − =
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(e) Just thinking about it, the dipole wants to align with the field, so it will begin to rotate 

back towards θ = 0.  But since there is no friction it will overshoot but eventually turn 
around and come back.  This is simple harmonic motion.  Except now we are doing it 
for rotation.  This is similar to last week’s problem #7.  We need to show that the 
torque depends linearly on the displacement angle: sinpE pEτ θ θ= ≈  where we 
have used the small angle approximation to linearize the sine.  So we can write out 
the rotational equivalent of F = ma, pE I Iτ θ α θ≈ = = , where I is the moment of 
inertia, 22I ma= . 

So we have: 
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where I have had to stick in a minus sign because this is a restoring torque (it always 
causes rotation back towards θ = 0).  This is the same second order linear differential 
equation you wrote the answer to last week: 
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 (f) The charge will be moving the fastest when it hits its equilibrium point.  How do I 

know that?  Its potential energy is a minimum there, so its kinetic energy must be a 
max.  Plus, that is always the case in these simple harmonic motion problems.  How 
fast is it going?  We can get it easily by realizing that the charge is moving along an 
arc ( s a )θΔ = Δ  and so its speed is given by: 

( )0 sinds dv a a
dt dt

θ tθ ω ω= = =  

Thus the maximum speed is where the sine = 1: 
 

max 0v qEa
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Just because we always should, lets make sure this makes sense.  If the charge is bigger it 
moves faster.  If the arm is bigger is also moves faster (although it oscillates more 
slowly).  That is subtle, so not particularly helpful as a dummy check.  Bigger E means 
more v, that makes sense.  So does the dependence on θ0. 

 



 
We also could have done this equating potential energy and kinetic energy (and realizing 
that both masses must be moving at the same speed): 
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where again we had to use a small angle approximation that 21

0 02cos 1θ θ≈ − . 
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