Module 05: Gauss's Law

## Gauss's Law

## The first Maxwell Equation!

And a very useful computational technique to find the electric field $E$ when the source has 'enough symmetry'.

## Gauss's Law - The Idea



The total "flux" of field lines penetrating any of these closed surfaces is the same and depends only on the amount of charge inside

## Gauss's Law - The Equation



Electric flux $\Phi_{E}$ (the surface integral of E over closed surface $S$ ) is proportional to charge inside the volume enclosed by $S$

Now the Details

## Electric Flux $\Phi_{E}$

Case I: E is constant vector field perpendicular to planar surface $S$ of area $A$


$$
\begin{gathered}
\Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
\Phi_{E}=-E A
\end{gathered}
$$

Our Goal: Always reduce problem to this

## Electric Flux $\Phi_{E}$

Case II: E is constant vector field directed at angle $\theta$ to planar surface $S$ of area $A$


$$
\begin{gathered}
\Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
d \overrightarrow{\mathbf{A}}=d A \hat{\mathbf{n}} \\
\Phi_{E}=E A \cos \theta
\end{gathered}
$$

## Concept Question: Flux

The electric flux through the planar surface below (positive unit normal to left) is:


1. positive.
2. negative.
3. zero.
4. I don't know

## Gauss's Law

$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surfaces }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{\text {in }}}{\varepsilon_{0}}
$$

Note: Integral must be over closed surface

## Open and Closed Surfaces



A rectangle is an open surface - it does NOT contain a volume A sphere is a closed surface - it DOES contain a volume

## Area Element dA: Closed Surface

For closed surface, dA is normal to surface and points outward ( from inside to outside)

$\Phi_{E}>0$ if $E$ points out
$\Phi_{E}<0$ if $E$ points in

## Electric Flux $\Phi_{E}$

Case III: E not constant, surface curved


$$
\begin{gathered}
d \Phi_{E}=\overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
\Phi_{E}-\iint d \Phi_{E}
\end{gathered}
$$

## Concept Question: Flux thru Sphere

 The total flux through the below spherical surface is

1. positive (net outward flux).
2. negative (net inward flux).
3. zero.
4. I don't know

## Electric Flux: Sphere

 Point charge $\mathbf{Q}$ at center of sphere, radius $r$E field at surface:

$$
\overrightarrow{\mathbf{E}}(r)=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Electric flux through sphere:

$$
\Phi_{E}=\iiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\iint_{S} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}} \cdot d A \hat{\mathbf{r}}
$$

$$
=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \iint_{S} d A=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} 4 \pi r^{2}=\frac{Q}{\varepsilon_{0}}
$$



## Arbitrary Gaussian Surfaces



$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surface } S}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q}{\varepsilon_{0}}
$$

True for all surfaces such as $S_{1}, S_{2}$ or $S_{3}$ Why? As A gets bigger E gets smaller

## Choosing Gaussian Surface



$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surface } \mathrm{S}}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{Q}{\varepsilon_{0}}
$$

True for ALL surfaces
Useful (to calculate E) for SOME surfaces

Desired E: Perpendicular to surface and constant on surface.

Flux is EA or -EA.
Other E: Parallel to surface.
Flux is zero

## Symmetry \& Gaussian Surfaces

Desired E: perpendicular to surface and constant on surface. So Gauss's Law useful to calculate E field from highly symmetric sources

## Source Symmetry Gaussian Surface

## Spherical <br> Concentric Sphere

Cylindrical
Planar
Coaxial Cylinder
Gaussian "Pillbox"

## Applying Gauss's Law

1. Based on the source, identify regions in which to calculate E field.
2. Choose Gaussian surfaces S : Symmetry
3. Calculate $\Phi_{E}=\oiint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}$
4. Calculate $q_{i n}$, chărge enclosed by surface $S$
5. Apply Gauss's Law to calculate E:

$$
\Phi_{E}=\oiint_{\substack{\text { closed } \\ \text { surfaces }}} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q_{i n}}{\varepsilon_{0}}
$$

## Examples: Spherical Symmetry Cylindrical Symmetry Planar Symmetry

## Gauss: Spherical Symmetry

$+Q$ uniformly distributed throughout non-conducting solid sphere of radius $a$. Find E everywhere


## Gauss: Spherical Symmetry

Symmetry is Spherical

$$
\overrightarrow{\mathbf{E}}=E \hat{\mathbf{r}}
$$

Use Gaussian Spheres


## Gauss: Spherical Symmetry

Region 1: $r>a$
Draw Gaussian Sphere in Region $1(r>a)$


Note: $r$ is arbitrary but is the radius for which you will calculate the E field!

## Problem: Outside Sphere

Region 1: $r>a$
Use Gauss's Law in Region 1 ( $r>a$ )


Again: Remember that $r$ is arbitrary but is the radius for which you will calculate the $E$ field!

## Gauss: Spherical Symmetry

## Region 2: $r<a$

Total charge enclosed:
$q_{i n}=\left(\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi a^{3}}\right) Q=\left(\frac{r^{3}}{a^{3}}\right) Q \quad$ OR $\quad q_{i n}=\rho V$
Gauss's law:

$$
\begin{aligned}
& \Phi_{E}=E\left(4 \pi r^{2}\right)=\frac{q_{i n}}{\varepsilon_{0}}=\left(\frac{r^{3}}{a^{3}}\right) \frac{Q}{\varepsilon_{0}} \\
& E=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{a^{3}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{r}{a^{3}} \hat{\mathbf{r}}
\end{aligned}
$$



## Concept Question: Spherical Shell

We just saw that in a solid sphere of charge the electric field grows linearly with distance. Inside the charged spherical shell at right $(r<a)$ what does the electric field
 do?

1. Constant and Zero
2. Constant but Non-Zero
3. Still grows linearly
4. Some other functional form (use Gauss' Law)
5. Can't determine with Gauss Law

## Demonstration Field Inside Spherical Shell (Grass Seeds):

## Gauss: Planar Symmetry

Infinite slab with uniform charge density $\sigma$ Find $E$ outside the plane


## Gauss: Planar Symmetry

Symmetry is Planar

$$
\overrightarrow{\mathbf{E}}= \pm E \hat{\mathbf{x}}
$$

Use Gaussian Pillbox
Note: $A$ is arbitrary (its size and shape) and should divide out


## Gauss: Planar Symmetry

Total charge enclosed: $q_{i n}=c A$
NOTE: No flux through side of cylinder, only endcaps

$$
\begin{aligned}
\Phi_{E} & =\iiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E f \iint_{\mathrm{S}} d A=E A_{\text {Endcaps }} \\
& =E(2 A)=\frac{q_{\text {in }}}{\varepsilon_{0}}=\frac{\sigma A}{\varepsilon_{0}} \\
E & =\frac{C}{2 \varepsilon_{0}} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{\sigma}{2 \varepsilon_{0}}\left\{\begin{array}{|l}
\hat{\mathbf{x}} \text { to right } \\
-\hat{\mathbf{x}} \\
\text { to left }
\end{array}\right\}
\end{aligned}
$$



## E for Plane is Constant????

1) Dipole:

E falls off like $1 / r^{3}$
2) Point charge:

E falls off like $1 / r^{2}$
3) Line of charge: E falls off like $1 / r$
4) Plane of charge: E constant

## Concept Question: Slab of Charge

Consider positive, semi-infinite (in x \& y) flat slab
$z$-axis is perp. to the sheet, with center at $z=0$.
At the plane's center $(z=0), \mathbf{E}$


1. points in the positive $z$-direction.
2. points in the negative $z$-direction.
3. points in some other $(x, y)$ direction.
4. is zero.
5. I don't know

## Problem: Charge Slab

Infinite slab with uniform charge density $\rho$
Thickness is 2d (from $x=-d$ to $x=d$ ).
Find $E$ for $x>0$ (how many regions is that?)


## Gauss: Cylindrical Symmetry

Infinitely long rod with uniform charge density $\lambda$ Find E outside the rod.

## Gauss: Cylindrical Symmetry

Symmetry is Cylindrical

$$
\overrightarrow{\mathbf{E}}=E \hat{\mathbf{r}}
$$

Use Gaussian Cylinder
Note: $r$ is arbitrary but is the radius for which you will calculate the E field! $\ell$ is arbitrary and should divide out


## Gauss: Cylindrical Symmetry

Total charge enclosed: $q_{i n}=\lambda \ell$

$$
\begin{aligned}
\Phi_{E} & =\iiint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=E \iiint_{\mathrm{S}} d A=E A \\
& =E(2 \pi r \ell)=\frac{q_{i n}}{\varepsilon_{0}}=\frac{\lambda \ell}{\varepsilon_{0}} \\
E & =\frac{\lambda}{2 \pi \varepsilon_{0} r} \Rightarrow \overrightarrow{\mathbf{E}}=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}}
\end{aligned}
$$

MIT OpenCourseWare
|http://ocw.mit.edu

### 8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

