Introduction to Electric Fields
 Challenge Problem Solutions

Problem 1:

We have defined a vector field as a family of vectors, with a vector at every point in space. A scalar field can be likewise defined as a family of scalars, namely at every point in space the field has a value but no direction. Name as many examples of scalar and vector fields as possible.

Vector fields

Make a plot of the following vector fields:
(a) $\overrightarrow{\mathbf{v}}=3 \hat{\mathbf{i}}-5 \hat{\mathbf{j}}$
(b) $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{r}}$
(c) $\overrightarrow{\mathbf{v}}=\frac{\hat{\mathbf{r}}}{r^{2}}$
(d) $\overrightarrow{\mathbf{v}}=\frac{3 x y}{r^{5}} \hat{\mathbf{i}}+\frac{2 y^{2}-x^{2}}{r^{5}} \hat{\mathbf{j}}$

Problem 1 Solutions:

(a) This is an example of a constant vector field in two dimensions. The plot is depicted below:

(b)

(c)

In two dimensions, using the Cartesian coordinates where $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}, \overrightarrow{\mathbf{v}}$ can be written as

$$
\overrightarrow{\mathbf{v}}=\frac{\hat{\mathbf{r}}}{r^{2}}=\frac{\overrightarrow{\mathbf{r}}}{r^{3}}=\frac{x \hat{\mathbf{i}}+y \hat{\mathbf{j}}}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

The plot is shown below:

Both the gravitational field of the Earth $\overrightarrow{\mathbf{g}}$ and the electric field $\overrightarrow{\mathbf{E}}$ due to a point charge have the same characteristic behavior as $\overrightarrow{\mathbf{v}}$. Note that in three dimensions, we would have $\overrightarrow{\mathbf{r}}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$, and the plot would look like

(d)

The plot is characteristic of the electric field due to a point electric dipole located at the origin.

Problem 2:

Scalar fields

Make a plot of the following scalar functions in two dimensions:
(a) $f(r)=\frac{1}{r}$
(b) $f(x, y)=\frac{1}{\sqrt{x^{2}+(y-1)^{2}}}-\frac{1}{\sqrt{x^{2}+(y+1)^{2}}}$

Problem 2 Solutions:

(a)

In two dimensions, $r=\sqrt{x^{2}+y^{2}}$

The plot represents the electric potential due to a point charge located at the origin.
(b)

This plot represents the potential due to a dipole with the positive charge located at $y=1$ and the negative charge at $y=-1$.

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

