Module 01: Introduction to Electric Fields

Scalar Fields

e.g. Temperature: Every location has associated value (number with units)

Scalar Fields - Contours

- Colors represent surface temperature
- Contour lines show constant temperatures

Fields are 3D

T − T(x,y,z)
Hard to visualize
→ Work in 2D

Vector Fields

Vector (magnitude, direction) at every point in space

Example: Velocity vector field - jet stream

Begin with Fluid Flow

Flows With Sources

Link to movie

Flows With Sinks

Link to movie

Circulating Flows

Link to movie

Visualizing Vector Fields: Three Methods

Vector Field Diagram

Arrows (different colors or length) in direction of field on uniform grid.

Field Lines

Lines tangent to field at every point along line **Grass Seeds**

Textures with streaks parallel to field direction

All methods illustrated in Vector Field Diagram Java Applet (link)

Vector Fields – Field Lines

- Direction of field line at any point is tangent to field at that point
- Field lines never cross each other

Concept Question Question: Vector Field

Concept Question: Vector Field

The field line at left corresponds to the vector field:

1.
$$\vec{\mathbf{F}}(x, y) = \sin(x)\hat{\mathbf{i}} + \hat{\mathbf{j}}$$

2. $\vec{\mathbf{F}}(x, y) = \hat{\mathbf{i}} + \sin(x)\hat{\mathbf{j}}$
3. $\vec{\mathbf{F}}(x, y) = \cos(x)\hat{\mathbf{i}} + \hat{\mathbf{j}}$
4. $\vec{\mathbf{F}}(x, y) = \hat{\mathbf{i}} + \cos(x)\hat{\mathbf{j}}$
5. I don't know

Vector Fields – "Grass Seeds"

Source/Sink Circulating (link) (link) "Grass seeds" still does not give us absolute direction, only modulo 180 degrees Concept Question Questions: "Grass Seed" Visualizations

Concept Question: Grass Seeds

The vector field at left is created by:

- 1. Two sources (equal strength)
- 2. Two sources (top stronger)
- 3. Two sources (bottom stronger)
- 4. Source & Sink (equal strength)
- 5. Source & Sink (top stronger)
- 6. Source & Sink (bottom stronger)
- 7. I don't know

Concept Question: Grass Seeds

Here there is an initial downward flow.

- 1. The point is a source
- 2. The point is a sink
- 3. I don't know

Concept Question: Circulation

These two circulations are in:

- 1. The same direction (e.g. both clockwise)
- 2. Opposite directions (e.g. one cw, one ccw)
- 3. I don't know

Concept Question: Vector Field

The grass seeds field plot at left is a representation of the vector field:

1.
$$\vec{F}(x, y) = x^2 \hat{i} + y^2 \hat{j}$$

2. $\vec{F}(x, y) = y^2 \hat{i} + x^2 \hat{j}$
3. $\vec{F}(x, y) = \sin(x) \hat{i} + \cos(y) \hat{j}$
4. $\vec{F}(x, y) = \cos(x) \hat{i} + \sin(y) \hat{j}$
5. I don't know

Another Vector Field: Gravitational Field

M: Mass of Earth

Example Of Vector Field: Gravitation

Gravitational Field:

$$\vec{\mathbf{g}} = -G \frac{M}{r^2} \hat{\mathbf{r}} \qquad \vec{\mathbf{F}}_g = m \vec{\mathbf{g}}$$

Created by M

Felt by m

- $\hat{\mathbf{r}}$: unit vector from *M* to *m*
- $\vec{\mathbf{r}}$: vector from *M* to *m*

$$\hat{\mathbf{r}} = \frac{\mathbf{r}}{r} \implies \vec{\mathbf{g}} = -G\frac{M}{r^3}\vec{\mathbf{r}}$$

M: Mass of Earth

This form is easier to use

The Superposition Principle

Net force/field is vector sum of forces/fields

Example:

 $\vec{\mathbf{F}}_3 = \vec{\mathbf{F}}_{13} + \vec{\mathbf{F}}_{23}$

In general:

Checkpoint Problem

Find the gravitational field \vec{g} at point P

Bonus: Where would you put another mass m to make the field \vec{g} become 0 at P?

Use
$$\vec{\mathbf{g}} = -G\frac{M}{r^3}\vec{\mathbf{r}}$$

From Gravitational to Electric Fields

Electric Charge (~Mass)

Two types of electric charge: positive and negative Unit of charge is the *coulomb* [C]

Charge of electron (negative) or proton (positive) is

$$\pm e, \quad e = 1.602 \times 10^{-19} C$$

Charge is quantized

$$Q = \pm Ne$$

Charge is conserved

$$n - p + e^- + \overline{\nu}$$
 $e^+ + e^- - \gamma + \gamma$

Electric Force (~Gravity)

The electric force between charges q_1 and q_2 is

(a) repulsive if charges have same signs(b) attractive if charges have opposite signs

Like charges repel and opposites attract !!

Coulomb's Law

Coulomb's Law: Force on q_2 due to interaction between q_1 and q_2

Coulomb's Law: Example

$$\vec{\mathbf{F}}_{32} = ?$$

$$\vec{\mathbf{r}}_{32} = \left(\frac{1}{2}\hat{\mathbf{i}} - \frac{\sqrt{3}}{2}\hat{\mathbf{j}}\right) \mathbf{m}$$
$$r - 1\mathbf{m}$$

$$\vec{\mathbf{F}}_{32} = k_e q_3 q_2 \frac{\vec{\mathbf{r}}}{r^3} = (9 \times 10^9 \,\mathrm{N} \,\mathrm{m}^2/\mathrm{C}^2)(3\mathrm{C})(3\mathrm{C}) \frac{\frac{1}{2}(\hat{\mathbf{i}} - \sqrt{3}\hat{\mathbf{j}})\mathrm{m}}{(1\mathrm{m})^3}$$

$$=\frac{81\times10^9}{2}\left(\hat{\mathbf{i}}-\sqrt{3}\hat{\mathbf{j}}\right) \text{ N}$$

The Superposition Principle

Many Charges Present:

Net force on any charge is vector sum of forces from other individual charges

Electric Field (~g)

The electric field at a point *P* due to a charge q is the force acting on a test charge q_0 at that point *P*, divided by the charge q_0 :

$$\vec{\mathbf{E}}_q(P) \equiv \frac{\vec{\mathbf{F}}_{qq_0}}{q_0}$$

For a point charge q:

$$\vec{\mathbf{E}}_q(P) = k_e \frac{q}{r^2} \hat{\mathbf{r}}$$

Units: Newtons/Coulomb, same as Volts/meter₃₁

Superposition Principle

The electric field due to a collection of *N* point charges is the vector sum of the individual electric fields due to each charge

Summary Thus Far

- SOURCE: Mass M_s Charge $q_s(\pm)$
- CREATE: $\vec{\mathbf{g}} = -G \frac{M_s}{r^2} \hat{\mathbf{r}}$ $\vec{\mathbf{E}} = k_e \frac{q_s}{r^2} \hat{\mathbf{r}}$

FEEL:

Concept Question Question: Electric Field

Concept Question: Electric Field

Two opposite charges are placed on a line as shown below. The charge on the right is three times larger than the charge on the left. Other than at infinity, where is the electric field zero?

- 1. Between the two charges
- 2. To the right of the charge on the right
- 3. To the left of the charge on the left
- 4. The electric field is nowhere zero
- 5. Not enough info need to know which is positive
- 6. I don't know

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.