Math Review
 Challenge Problems

Problem 1:

Triangle Identity

Two sides of the triangle in Figure 1 form an angle θ. The sides have lengths a and b.

Figure 1: Law of cosines
The length of the opposite side is given by the relation triangle identity

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

Suppose we describe the two given sides of the triangles by the vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, with $|\overrightarrow{\mathbf{A}}|=a$ and $|\overrightarrow{\mathbf{B}}|=b$.

Figure 2: Vector construction

1) What is the geometric meaning of the vector $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}$?
2) The square root of the dot product $|\overrightarrow{\mathbf{C}}|=\sqrt{\overrightarrow{\mathbf{C}} \cdot \overrightarrow{\mathbf{C}}}$ is the magnitude of the difference of the vectors. Show that the magnitude of the difference is the length of the opposite side of the triangle shown in figure $1,|\overrightarrow{\mathbf{C}}|=c$.

Problem 2:

Dot and Cross products

Three vectors $\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}$, and $\overrightarrow{\mathbf{C}}$ form a geometric solid as shown in Figure 3. Show that the volume of the solid is equal to $\overrightarrow{\mathbf{C}} \cdot(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}})$.

Figure 3: Volume

Problem 3:

Two Vectors

Given two vectors, $\overrightarrow{\mathbf{A}}=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{B}}=(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$, evaluate the following:
(a) $3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$;
(b) $\overrightarrow{\mathbf{A}}-4 \overrightarrow{\mathbf{B}}$;
(c) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$;
(d) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$.
(e) What is the angle between $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$?
(f) Find a unit vector perpendicular to $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$?

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

