Math Review
 Challenge Problem Solutions

Problem 1:

Triangle Identity

Two sides of the triangle in Figure 1 form an angle θ. The sides have lengths a and b.

Figure 1: Law of cosines
The length of the opposite side is given by the relation triangle identity

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

Suppose we describe the two given sides of the triangles by the vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$, with $|\overrightarrow{\mathbf{A}}|=a$ and $|\overrightarrow{\mathbf{B}}|=b$.

Figure 2: Vector construction

1) What is the geometric meaning of the vector $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}}$?
2) The square root of the dot product $|\overrightarrow{\mathbf{C}}|=\sqrt{\overrightarrow{\mathbf{C}} \cdot \overrightarrow{\mathbf{C}}}$ is the magnitude of the difference of the vectors. Show that the magnitude of the difference is the length of the opposite side of the triangle shown in figure $1,|\overrightarrow{\mathbf{C}}|=c$.

Problem 2:

Dot and Cross products

Three vectors $\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}$, and $\overrightarrow{\mathbf{C}}$ form a geometric solid as shown in Figure 3. Show that the volume of the solid is equal to $\overrightarrow{\mathbf{C}} \cdot(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}})$.

Figure 3: Volume

Problem 2 Solutions:
 Volume of a Parallelepiped

(a) Consider the parallelepiped shown in the figure below:

As discussed in Review Module A, the vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ form a parallelogram. The cross product $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ is a vector that points in the direction perpendicular to the parallelogram, and the magnitude $|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|$ is equal to the area of the parallelogram. The volume, V, of the parallelepiped, is given by the product of the area of the parallelogram and the height of the parallelepiped. which is $C \cos \theta$ where $C=|\overrightarrow{\mathbf{C}}|$ and θ is the angle between the vector $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{C}}$. Thus, we have

$$
V=|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}||\overrightarrow{\mathbf{C}}| \cos \theta=(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) \cdot \overrightarrow{\mathbf{C}}
$$

(b) By direction computation, the triple product $(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) \cdot \overrightarrow{\mathbf{C}}$ is

$$
\begin{aligned}
(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) \cdot \overrightarrow{\mathbf{C}} & =\left[\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}}\right] \cdot\left(C_{x} \hat{\mathbf{i}}+C_{y} \hat{\mathbf{j}}+C_{z} \hat{\mathbf{k}}\right) \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) C_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) C_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) C_{z}
\end{aligned}
$$

On the other hand, the determinant is

$$
\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|=A_{x}\left(B_{y} C_{z}-B_{z} C_{y}\right)+A_{y}\left(B_{z} C_{x}-B_{x} C_{z}\right)+A_{z}\left(B_{x} C_{y}-B_{y} C_{x}\right)
$$

With little algebra, one may show that the above two expressions are equal to each other. That is,

$$
(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) \cdot \overrightarrow{\mathbf{C}}=\left|\begin{array}{ccc}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

Problem 3:

Two Vectors

Given two vectors, $\overrightarrow{\mathbf{A}}=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+6 \hat{\mathbf{k}})$ and $\overrightarrow{\mathbf{B}}=(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$, evaluate the following:
(a) $3 \overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$;
(b) $\overrightarrow{\mathbf{A}}-4 \overrightarrow{\mathbf{B}}$;
(c) $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$;
(d) $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$.
(e) What is the angle between $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$?
(f) Find a unit vector perpendicular to $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$?

Problem 3 Solution:

With $\dot{\mathbf{A}}=(3 \ddot{\mathbf{P}}-2 \ddot{\mathbf{j}}+6 \ddot{\mathbf{R}})$ and $\overrightarrow{\mathbf{B}}=(5 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$, we obtain the following results:
(a) $3 \mathbf{A}^{\prime}+\dot{\mathbf{B}}=33^{\prime}=3(3 \ddot{\mathrm{P}}-2 \ddot{\boldsymbol{\rho}}+6 \ddot{\mathrm{R}})+(5 \ddot{\mathbf{P}}+\ddot{\boldsymbol{\rho}}+2 \ddot{\mathbf{R}})=14 \ddot{\mathbf{P}}-5 \ddot{\boldsymbol{\rho}}+20 \ddot{\boldsymbol{R}}$
(b) ${ }^{\mathbf{A}}-4 \dot{\mathbf{B}}=(3 \ddot{\mathrm{P}}-2 \ddot{\boldsymbol{\rho}}+6 \ddot{\mathrm{R}})-4(5 \ddot{\mathbf{P}}+\ddot{\boldsymbol{\rho}}+2 \ddot{\mathbf{R}})=-17 \ddot{\mathbf{P}}-6 \ddot{\boldsymbol{\rho}}-2 \ddot{\mathbf{R}}$
(c) Since $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1$ and $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{i}}=0$ (see Review Module A), the dot product is

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=(3)(5)+(-2)(1)+(6)(2)=25
$$

(d) With $\hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}}, \hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}}$ and $\hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}}$, the cross product $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ of the two vectors is given by

$$
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
3 & -2 & 6 \\
5 & 1 & 2
\end{array}\right|=-10 \hat{\mathbf{i}}+24 \hat{\mathbf{j}}+13 \hat{\mathbf{k}}
$$

(e) The dot product of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ is $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \cos \theta$ where θ is the angle between the two vectors. With

$$
\begin{gathered}
A=|\overrightarrow{\mathbf{A}}|=\sqrt{3^{2}+(-2)^{2}+6^{2}}=\sqrt{49}=7 \\
B=|\overrightarrow{\mathbf{B}}|=\sqrt{5^{2}+1^{2}+2^{2}}=\sqrt{30},
\end{gathered}
$$

and using the result from part (c), we obtain

$$
\cos \theta=\frac{\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}|}=\frac{25}{7 \sqrt{30}}=0.652 \Rightarrow \theta=49.3^{\circ} .
$$

(f) The cross product $\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}$ (or $\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}}$) is perpendicular to both $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$. Therefore, from the result obtained in part (d), the unit vector may be obtained as

$$
\hat{\mathbf{n}}= \pm \frac{\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}}{|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|}= \pm \frac{1}{\sqrt{(-10)^{2}+(24)^{2}+(13)^{2}}}(-10 \hat{\mathbf{i}}+24 \hat{\mathbf{j}}+13 \hat{\mathbf{k}})= \pm \frac{1}{\sqrt{845}}(-10 \hat{\mathbf{i}}+24 \hat{\mathbf{j}}+13 \hat{\mathbf{k}})
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

