Module 02: Math Review

Module 02: Math Review: Outline

Vector Review (Dot, Cross Products)
Review of 1D Calculus
Scalar Functions in higher dimensions
Vector Functions
Differentials
Purpose: Provide conceptual framework NOT teach mechanics

Coordinate System

Coordinate system: used to describe the position of a point in space and consists of

1. An origin as the reference point
2. A set of coordinate axes with scales and labels
3. Choice of positive direction for each axis
4. Choice of unit vectors at each point in space

Cartesian Coordinate System

Vectors

Vector

A vector is a quantity
that has both direction and magnitude. Let a vector be denoted by the symbol $\overrightarrow{\mathbf{A}}$
The magnitude of $\overrightarrow{\mathbf{A}}$
is denoted by $|\overrightarrow{\mathbf{A}}| \equiv A$

Application of Vectors

(1) Vectors can exist at any point P in space.
(2) Vectors have direction and magnitude.
(3) Vector Equality: Any two vectors that have the same direction and magnitude are equal no matter where in space they are located.

Vector Addition

Let $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ be two vectors. Define a new vector $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$,the "vector addition" of $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ by the geometric construction shown in either figure

Summary: Vector Properties

Addition of Vectors

1. Commutativity

$$
\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{A}}
$$

2. Associativity

$$
(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}})+\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+(\overrightarrow{\mathbf{B}}+\overrightarrow{\mathbf{C}})
$$

3. Identity Element for Vector Addition $\overrightarrow{\mathbf{0}}$ such that $\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}$
4. Inverse Element for Vector Addition $-\overrightarrow{\mathbf{A}}$ such that $\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{A}})=\overrightarrow{\mathbf{0}}$

Scalar Multiplication of Vectors

1. Associative Law for Scalar Multiplication

$$
\begin{aligned}
& b(c \overrightarrow{\mathbf{A}})=(b c) \overrightarrow{\mathbf{A}}=(c b \overrightarrow{\mathbf{A}})=c(b \overrightarrow{\mathbf{A}}) \\
& c(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}})=c \overrightarrow{\mathbf{A}}+c \overrightarrow{\mathbf{B}} \\
& (b+c) \overrightarrow{\mathbf{A}}=b \overrightarrow{\mathbf{A}}+c \overrightarrow{\mathbf{A}}
\end{aligned}
$$

2. Distributive Law for Vector Addition
3. Distributive Law for Scalar Addition
4. Identity Element for Scalar Multiplication: number 1 such that

$$
1 \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}
$$

Vector Decomposition

Choose a coordinate system with an origin and axes. We can decompose a vector into component vectors along each coordinate axis, for example along the x, y, and z-axes of a Cartesian coordinate system. A vector at P can be decomposed into the vector sum,

$$
\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{A}}_{x}+\overrightarrow{\mathbf{A}}_{y}+\overrightarrow{\mathbf{A}}_{z}
$$

Unit Vectors and Components

The idea of multiplication by real numbers allows us to define a set of unit vectors at each point in space
(i, $, \hat{\mathbf{j}}, \hat{\mathbf{k}})$ with $|\hat{\mathbf{i}}|=1,|\hat{\mathbf{j}}|=1,|\hat{\mathbf{k}}|=1$ Components:

$$
\overrightarrow{\mathbf{A}}=\left(A_{x}, A_{y}, A_{z}\right)
$$

$\overrightarrow{\mathbf{A}}_{x}=A_{x} \hat{\mathbf{i}}, \overrightarrow{\mathbf{A}}_{y}=A_{y} \hat{\mathbf{j}}, \quad \overrightarrow{\mathbf{A}}_{z}=A_{z} \hat{\mathbf{k}} \quad \overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}$

Vector Decomposition in Two Dimensions

Consider a vector

$$
\overrightarrow{\mathbf{A}}=\left(A_{x}, A_{y}, 0\right)
$$

x - and y components:
$A_{x}=A \cos (\theta), \quad A_{y}=A \sin (\theta)$
Magnitude: $\quad A=\sqrt{A_{x}^{2}+A_{y}^{2}}$

Direction: $\quad \frac{A_{y}}{A_{x}}=\frac{A \sin (\theta)}{A \cos (\theta)}=\tan (\theta)$

$$
\theta=\tan ^{-1}\left(A_{y} / A_{x}\right)
$$

Vector Addition

$\overrightarrow{\mathbf{A}}=A \cos \left(\theta_{A}\right) \hat{\mathbf{i}}+A \sin \left(\theta_{A}\right) \hat{\mathbf{j}}$
$\overrightarrow{\mathbf{B}}=B \cos \left(\theta_{B}\right) \hat{\mathbf{i}}+B \sin \left(\theta_{B}\right) \hat{\mathbf{j}}$

Vector Sum: $\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$ Components

$$
C_{x}=A_{x}+B_{x}, \quad C_{y}=A_{y}+B_{y}
$$

$$
C_{x}-C \cos \left(\theta_{C}\right)-A \cos \left(\theta_{A}\right)+B \cos \left(\theta_{B}\right)
$$

$$
C_{y}=C \sin \left(\theta_{C}\right)=A \sin \left(\theta_{A}\right)+B \sin \left(\theta_{B}\right)
$$

$$
\overrightarrow{\mathbf{C}}=\left(A_{x}+B_{x}\right) \hat{\mathbf{i}}+\left(A_{y}+B_{y}\right) \hat{\mathbf{j}}=C \cos \left(\theta_{C}\right) \hat{\mathbf{i}}+C \sin \left(\theta_{C}\right) \hat{\mathbf{j}}
$$

Preview: Vector Description of Motion

- Position $\quad \overrightarrow{\mathbf{r}}(t)=x(t) \hat{\mathbf{i}}+y(t) \hat{\mathbf{j}}$
- Displacement $\quad \Delta \overrightarrow{\mathbf{r}}(t)=\Delta x(t) \hat{\mathbf{i}}+\Delta y(t) \hat{\mathbf{j}}$
- Velocity $\quad \overrightarrow{\mathbf{v}}(t)=\frac{d x(t)}{d t} \hat{\mathbf{i}}+\frac{d y(t)}{d t} \hat{\mathbf{j}} \equiv v_{x}(t) \hat{\mathbf{i}}+v_{y}(t) \hat{\mathbf{j}}$
- Acceleration $\quad \overrightarrow{\mathbf{a}}(t)=\frac{d v_{x}(t)}{d t} \hat{\mathbf{i}}+\frac{d v_{y}(t)}{d t} \hat{\mathbf{j}} \equiv a_{x}(t) \hat{\mathbf{i}}+a_{y}(t) \hat{\mathbf{j}}$

Scalar Product

A scalar quantity
Magnitude:

$$
\overrightarrow{\mathbf{A}} \cdot \stackrel{\rightharpoonup}{\mathbf{B}}=|\overline{\mathbf{A}}| \overrightarrow{\mathbf{B}} \mid \cos \theta
$$

The scalar (dot) product can be positive, zero, or negative
Two types of projections: the scalar product is the parallel component of one vector with respect to the second vector times the magnitude of the second vector

$$
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=|\overrightarrow{\mathbf{A}}|(\cos \theta)|\overrightarrow{\mathbf{B}}|=A_{\|}|\overrightarrow{\mathbf{B}}|
$$

$$
\overrightarrow{\mathbf{A}} \cdot \stackrel{\rightharpoonup \mathbf{B}}{ }=|\overrightarrow{\mathbf{A}}|(\cos \theta)|\overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}| B_{\|}
$$

Scalar Product Properties

$$
\begin{gathered}
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathbf{A}} \\
c \overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{B}}-c(\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}) \\
(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}) \cdot \overrightarrow{\mathrm{C}}=\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathrm{C}}+\overrightarrow{\mathbf{B}} \cdot \overrightarrow{\mathrm{C}}
\end{gathered}
$$

Scalar Product in Cartesian Coordinates

With unit vectors $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$

$$
\begin{aligned}
& \hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \\
& \hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=0
\end{aligned}
$$

$$
\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=|\hat{\mathbf{i}} \| \hat{\mathbf{i}}| \cos (0)=1
$$

$$
\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=|\hat{\mathbf{i}}||\hat{\mathbf{j}}| \cos (\pi / 2)=0
$$

Example:

$$
\begin{gathered}
\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{gathered}
$$

Worked Example: Scalar Product

Given two vectors $\quad \overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$

$$
\overrightarrow{\mathbf{B}}--2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}
$$

Find $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$

Solution:

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} & =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z} \\
& =(1)(-2)+(1)(-1)+(-1)(3)=-6
\end{aligned}
$$

Summary: Vector Product

Magnitude: equal to the area of the parallelogram defined by the two vectors

$$
|\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}|=|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \sin \theta=|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \sin \theta)=(|\overrightarrow{\mathbf{A}}| \sin \theta)|\overrightarrow{\mathbf{B}}| \quad(0 \leq \theta \leq \pi)
$$

Direction: determined by the Right-Hand-Rule

Properties of Vector Products

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} & =-\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{A}} \\
c(\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}) & =\overrightarrow{\mathbf{A}} \times c \overrightarrow{\mathbf{B}}=c \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \\
(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}) \times \overrightarrow{\mathbf{C}} & =\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{C}}+\overrightarrow{\mathbf{B}} \times \overrightarrow{\mathbf{C}}
\end{aligned}
$$

Vector Product of Unit Vectors

- Unit vectors in Cartesian coordinates

$$
\begin{aligned}
& |\hat{\mathbf{i}} \times \hat{\mathbf{j}}|=\hat{\mathbf{i}}| | \hat{\mathbf{j}} \mid \sin (\pi / 2)=1 \\
& |\hat{\mathbf{i}} \times \hat{\mathbf{i}}|=|\hat{\mathbf{i}}||\hat{\mathbf{j}}| \sin (0)=0
\end{aligned}
$$

$$
\begin{aligned}
& |\hat{\mathbf{i}} \times \hat{\mathbf{i}}|=|\hat{\mathbf{i}} \| \hat{\mathbf{j}}| \sin (0)=0 \\
& \mid \hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}} \quad \hat{\mathbf{i}} \times \hat{\mathbf{i}}=\overrightarrow{\mathbf{0}} \\
& \hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}} \quad \hat{\mathbf{j}} \times \hat{\mathbf{j}}=\overrightarrow{\mathbf{0}} \\
& \hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}} \quad \hat{\mathbf{k}} \times \hat{\mathbf{k}}=\overrightarrow{\mathbf{0}}
\end{aligned}
$$

Components of Vector Product

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} & =A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}, \quad \overrightarrow{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}} \\
\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} & =\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\mathbf{i}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\mathbf{j}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{k}} \\
& =\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
\end{aligned}
$$

Worked Example: Vector Product

Find a unit vector perpendicular to

$$
\overrightarrow{\mathbf{A}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}
$$

and

$$
\overrightarrow{\mathbf{B}}=-2 \hat{\mathbf{i}}-\hat{\mathbf{j}}+3 \hat{\mathbf{k}}
$$

One Variable Calculus

Review: 1D Calculus

- Think about scalar functions in 1D:

Think of this as height of mountain vs position

Derivatives

How does function change with position?

Rate of change of f at $x=a$?

By the way... Taylor Series

- Approximate function? Use derivatives!
 What is $f(x)$ near $x=0.35$?

By the way... Taylor Series

- Approximate function? Use derivatives!

What is $f(x)$ near $x=0.35$?

$$
T_{0}(x)=f(0.35)
$$

Red curve is our approximation to $f(x)$ near $x=0.35$ using one term in the Taylor series

By the way... Taylor Series

- Approximate function? Use derivatives!

$$
\begin{aligned}
& \text { What is } \mathrm{f}(\mathrm{x}) \text { near } \mathrm{x}=0.35 ? \\
& T_{1}(x)=f(0.35) \\
& +f^{\prime}(0.35)(x-0.35)
\end{aligned}
$$

Red curve is our approximation to $f(x)$ near $x=0.35$ using two terms in the Taylor series

By the way... Taylor Series

- Approximate function? Use derivatives!

$$
\begin{aligned}
& \text { What is } \mathrm{f}(\mathrm{x}) \text { near } \mathrm{x}=0.35 \text { ? } \\
& T_{2}(x)=f(0.35) \\
& +f^{\prime}(0.35)(x-0.35) \\
& +\frac{1}{2} f^{\prime \prime}(0.35)(x-0.35)^{2}
\end{aligned}
$$

Red curve is our approximation to $f(x)$ near $x=0.35$ using three terms in the Taylor series

By the way... Taylor Series

- Approximate function? Use derivatives!

What is $f(x)$ near $x=0.35$?

$$
\begin{aligned}
& T_{10}(x)=f^{\prime}(0.35) \\
& \quad+f^{\prime}(0.35)(x-0.35)
\end{aligned}
$$

$+\frac{1}{2} f$ " $(0.35)(x-0.35)^{2}$

+ eleven more terms!
Red curve is our approximation to $f(x)$ near $x=0.35$ using 11 terms in the Taylor series

In general $T_{N}(x)=\left.\sum_{n=0}^{N} \frac{(x-a)^{n}}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x=a}$

Taylor Series Most Commonly Used Only to 1st Order

Most Common: $1^{\text {st }}$ Order

$$
\begin{aligned}
T_{1}(x)= & f(a)+ \\
& f^{\prime}(a)(x-a)
\end{aligned}
$$

- For hints as to when to use Taylor, look for "approximate" or "when x is small" or "small angle" or "close to" ...

Integration

Sum function while walking along axis b

Geometry: Find Area Also: Sum Contributions

Move to More Dimensions

We'll start in 2D

Scalar Functions in 2D

- Function is height of mountain:

Partial Derivatives

How does function change with position?

 In which direction are we moving?

Gradient

What is fastest way up the mountain?

Gradient

Gradient tells you direction to move:
$\nabla F=\hat{\mathbf{i}} \frac{\partial F}{\partial x}+\hat{\mathbf{j}} \frac{\partial F}{\partial y}, \nabla=\hat{\mathbf{i}} \frac{\partial}{\partial x}+\hat{\mathbf{j}} \frac{\partial}{\partial y}+\hat{\mathbf{k}} \frac{\partial}{\partial z}$
$\begin{aligned} & \partial_{x} F>0,-\infty,-\infty \\ & \partial_{y} F \approx 0 \quad \partial_{y} F \approx 0\end{aligned}$

Line Integral

Sum function while walking under surface along given curve

Just like 1D integral, except now not just along x

2D Integration

Sum function while walking under surface

Just Geometry: Finding Volume Under Surface

N-D Integration in General

Now think "contribution" from each piece
Find area of surface? $\iint_{\text {Surface }} d A$
Volume of object?

You Now Know It All

Small Extension to Vector Functions

Can't Easily Draw Multidimensional Vector Functions

In 2D various representations:

Vector Field Diagram

"Grass Seeds" / "Iron Filings"

Integrating Vector Functions

Two types of questions generally asked:

1) Integral of vector function yielding vector

Ex.: Mass Distribution

$$
\overrightarrow{\mathbf{g}}=-G \iiint_{\text {object }} \frac{d M}{r^{2}} \hat{\mathbf{r}}
$$

IDEA: Use Components - Just like scalar $\iint \overrightarrow{\mathbf{F}}(\overrightarrow{\mathbf{r}}) d A=$

$$
\hat{\mathbf{i}} \iint F_{x}(\overrightarrow{\mathbf{r}}) d A+\hat{\mathbf{j}} \iint F_{y}(\overrightarrow{\mathbf{r}}) d A+\hat{\mathbf{k}} \iint F_{z}(\overrightarrow{\mathbf{r}}) d A
$$

Integrating Vector Functions

Two types of questions generally asked:
2) Integral of vector function yielding scalar

Line Integral Ex.: Work $W-\int_{\text {Curre }} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}$
IDEA: While walking along the curve how much of the function lies along our path

Integrating Vector Functions

One last example: Flux
Q: How much does field E penetrate the surface?

$$
\text { Flux } \Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

Surface

Arc Length on Circle

One Important Geometry Fact: Relation between arc length on circle and included angle

Differentials

Rectangular Coordinates

z
$d V-d x d y d z$
$d A=d x d y$
$d A=d x d z$
$d A=d y d z$

Draw picture and think!
x

$d z$

Differentials

Cylindrical Coordinates

$d V-\rho d \varphi d \rho d z$
$d A=\rho d \varphi d z$
$d A=\rho d \varphi d \rho$
$d A=d \rho d z$

Draw picture and think!

Differentials ${ }^{\frac{Z}{3}}$

Spherical Coordinates

$d V-r \sin \theta d \varphi r d \theta d r$
$d A=r \sin \theta d \varphi r d \theta$

Draw picture and think!

Electricity and Magnetism: Math Review
Vectors:
Dot Product: How parallel?
Cross Product: How perpendicular?
Derivatives:
Rate of change (slope) of function
Gradient tells you how to go up fast Integrals:

Visit each piece and ask contribution

MIT OpenCourseWare
|http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

