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Module 2:  Math Review 
 

A.  Vector Analysis 
 
 
A.1 Vectors 
 
A.1.1 Introduction 
 
Certain physical quantities such as mass or the absolute temperature at some point only 
have magnitude. These quantities can be represented by numbers alone, with the 
appropriate units, and they are called scalars. There are, however, other physical 
quantities which have both magnitude and direction; the magnitude can stretch or shrink, 
and the direction can reverse. These quantities can be added in such a way that takes into 
account both direction and magnitude. Force is an example of a quantity that acts in a 
certain direction with some magnitude that we measure in newtons. When two forces act 
on an object, the sum of the forces depends on both the direction and magnitude of the 
two forces. Position, displacement, velocity, acceleration, force, momentum and torque 
are all physical quantities that can be represented mathematically by vectors. We shall 
begin by defining precisely what we mean by a vector.  
 
 
A.1.2 Properties of a Vector 
 
A vector is a quantity that has both direction and magnitude. Let a vector be denoted by 
the symbol A



. The magnitude of A


 is | A≡A |


.  We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure A.1.1). 
 

 
 

Figure A.1.1 Vectors as arrows. 
 
There are two defining operations for vectors:   
 
 (1) Vector Addition: Vectors can be added. 
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Let A



 and B


 be two vectors. We define a new vector, = +C A B
  

, the “vector addition” 
of A


 and B


, by a geometric construction. Draw the arrow that represents A


. Place the tail 
of the arrow that represents B



 at the tip of the arrow for A


 as shown in Figure A.1.2(a). 
The arrow that starts at the tail of A



 and goes to the tip of B


 is defined to be the “vector 
addition” = +C A B

  

. There is an equivalent construction for the law of vector addition. 
The vectors A



 and B


 can be drawn with their tails at the same point. The two vectors 
form the sides of a parallelogram. The diagonal of the parallelogram corresponds to the 
vector = +C A B

  

, as shown in Figure A.1.2(b). 
 

  
Figure A.1.2 Geometric sum of vectors. 

 
Vector addition satisfies the following four properties: 
 
(i) Commutivity: The order of adding vectors does not matter. 
 
 + = +A B B A

  

 (A.1.1) 
 
Our geometric definition for vector addition satisfies the commutivity property (i) since in 
the parallelogram representation for the addition of vectors, it doesn’t matter which side 
you start with as seen in Figure A.1.3. 
 

 
 

Figure A.1.3 Commutative property of vector addition 
 
(ii) Associativity:  When adding three vectors, it doesn’t matter which two you start with 
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 ( ) ( )+ + = + +A B C A B C
    

 (A.1.2) 
 
In Figure A.1.4(a), we add ( )+ +A B C

 

, while in Figure A.1.4(b) we add ( )+ +A B C
 

. 
We arrive at the same vector sum in either case. 
 

 
 

Figure A.1.4 Associative law. 
 
(iii) Identity Element for Vector Addition: There is a unique vector, 0



, that acts as an 
identity element for vector addition.  
 
This means that for all vectors A



, 
 
 + = + =A 0 0 A A

    

 (A.1.3) 
 
(iv) Inverse element for Vector Addition: For every vector A



, there is a unique inverse 
vector  
 
 ( )1− ≡ −A A

 

 (A.1.4) 
 
such that 

( )+ − =A A 0
  

 

 
This means that the vector −A



 has the same magnitude as A


, | | | | A= − =A A
 

, but they 
point in opposite directions (Figure A.1.5). 
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Figure A.1.5 additive inverse. 
 
 
(2) Scalar Multiplication of Vectors: Vectors can be multiplied by real numbers. 
 
Let A



 be a vector. Let 

 

c  be a real positive number. Then the multiplication of A


 by 

 

c  is 
a new vector which we denote by the symbol cA



.  The magnitude of cA


 is 

 

c  times the 
magnitude of A



 (Figure A.1.6a), 
 
 cA Ac=  (A.1.5) 
 
Since 

 

c > 0, the direction of cA


 is the same as the direction of A


. However, the direction 
of c− A



 is opposite of A


 (Figure A.1.6b). 
 

 
 

Figure A.1.6 Multiplication of vector A


 by (a) 0c > , and (b) 0c− < . 
 
Scalar multiplication of vectors satisfies the following properties: 
 
(i) Associative Law for Scalar Multiplication: The order of multiplying numbers is 
doesn’t matter.  
 
Let b and c be real numbers. Then 
 
 ( ) ( ) ( ) ( )b c bc cb c b= = =A A A A

   

 (A.1.6) 
 
(ii) Distributive Law for Vector Addition: Vector addition satisfies a distributive law 
for multiplication by a number.  
 
Let c be a real number. Then 
 
 ( )c c c+ = +A B A B

  

 (A.1.7) 
 
Figure A.1.7 illustrates this property. 
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Figure A.1.7 Distributive Law for vector addition. 
 
(iii) Distributive Law for Scalar Addition: The multiplication operation also satisfies a 
distributive law for the addition of numbers.  
 
Let b and c be real numbers. Then  
 
 ( )b c b c+ = +A A A

  

 (A.1.8) 
 
Our geometric definition of vector addition satisfies this condition as seen in Figure 
A.1.8. 
 

 
 

Figure A.1.8 Distributive law for scalar multiplication 
 
(iv) Identity Element for Scalar Multiplication: The number 1 acts as an identity 
element for multiplication, 
 
 1 =A A

 

 (A.1.9) 
 
A.1.3 Application of Vectors 
 
When we apply vectors to physical quantities it’s nice to keep in the back of our minds all 
these formal properties. However from the physicist’s point of view, we are interested in 
representing physical quantities such as displacement, velocity, acceleration, force, 
impulse, momentum, torque, and angular momentum as vectors. We can’t add force to 
velocity or subtract momentum from torque. We must always understand the physical 
context for the vector quantity. Thus, instead of approaching vectors as formal 
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mathematical objects we shall instead consider the following essential properties that 
enable us to represent physical quantities as vectors. 
 
(1) Vectors can exist at any point P in space.  
 
(2) Vectors have direction and magnitude. 
 
(3) Vector Equality:  Any two vectors that have the same direction and magnitude are 
equal no matter where in space they are located. 
 
(4) Vector Decomposition: Choose a coordinate system with an origin and axes. We can 
decompose a vector into component vectors along each coordinate axis. In Figure A.1.9 
we choose Cartesian coordinates for the -x y  plane (we ignore the z -direction for 
simplicity but we can extend our results when we need to). A vector A



 at P can be 
decomposed into the vector sum, 
 
 x y= +A A A

  

 (A.1.10) 
 
where xA



 is the x -component vector pointing in the positive or negative x -direction, 

and yA


 is the y -component vector pointing in the positive or negative y -direction 
(Figure A.1.9).  
 

 
 

Figure A.1.9 Vector decomposition 
 
(5) Unit vectors: The idea of multiplication by real numbers allows us to define a set of 
unit vectors at each point in space. We associate to each point P  in space, a set of three 
unit vectors ( )ˆ ˆ ˆ, ,i j k . A unit vector means that the magnitude is one: 1ˆ| |=i , 1ˆ| |=j , and 

1ˆ| |=k . We assign the direction of î  to point in the direction of the increasing x -
coordinate at the point P . We call î  the unit vector at P  pointing in the + x -direction. 
Unit vectors ĵ  and k̂  can be defined in a similar manner (Figure A.1.10). 
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Figure A.1.10 Choice of unit vectors in Cartesian coordinates. 
 
(6) Vector Components:  Once we have defined unit vectors, we can then define the x -
component and y -component of a vector. Recall our vector decomposition, 

x y= +A A A
  

. We can write the x-component vector, xA


, as 
 
 x x̂A=A i



 (A.1.11) 
 
In this expression the term 

 

Ax , (without the arrow above) is called the x-component of the 
vector A



. The x -component 

 

Ax  can be positive, zero, or negative. It is not the magnitude 
of xA


 which is given by 2 1/ 2( )xA .  Note the difference between the x -component,

 

Ax , and 

the x -component vector, xA


. 
 
In a similar fashion we define the y -component, 

 

Ay , and the z -component, 

 

Az , of the 

vector A


 
 
 y y z z

ˆ ˆA , A= =A j A k
 

 (A.1.12) 
 
A vector A



 can be represented by its three components ( )x y zA ,A ,A=A


. We can also 
write the vector as  
 x y z

ˆ ˆ ˆA A A= + +A i j k


 (A.1.13) 
 
(7) Magnitude: In Figure A.1.10, we also show the vector components ( )x y zA ,A ,A=A



. 

Using the Pythagorean theorem, the magnitude of the A


 is, 
 
 2 2 2

x y zA A A A= + +  (A.1.14) 
 
(8) Direction: Let’s consider a vector ( 0)x yA ,A ,=A



. Since the z -component is zero, the 

vector A


 lies in the -x y  plane. Let 

 

θ  denote the angle that the vector A


 makes in the 
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counterclockwise direction with the positive x -axis (Figure A.1.12). Then the x -
component and y -components are 
 
 cos sinx yA A , A Aθ θ= =  (A.1.15) 

 

 
 

Figure A.1.12 Components of a vector in the x-y plane. 
 
We can now write a vector in the -x y  plane as 
 
 ˆ ˆcos sinA Aθ θ= +A i j



 (A.1.16) 
 
Once the components of a vector are known, the tangent of the angle 

 

θ  can be determined 
by 
 

 sin tan
cos

y

x

A A
A A

θ θ
θ

= =  (A.1.17) 

 
which yields 
 

 1tan y

x

A
A

θ −  
=  

 
 (A.1.18) 

 
 
Clearly, the direction of the vector depends on the sign of xA  and yA . For example, if 
both 0xA >  and 0yA > , then 0 / 2θ π< < , and the vector lies in the first quadrant. If, 
however, 0xA >  and 0yA < , then / 2 0π θ− < < , and the vector lies in the fourth 
quadrant. 
 
(9) Vector Addition: Let A



 and B


 be two vectors in the x-y plane. Let 

 

θA  and

 

θB  denote 
the angles that the vectors A



 and B


 make (in the counterclockwise direction) with the 
positive x-axis. Then  
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 cos sinA A
ˆ ˆA Aθ θ= +A i j



 (A.1.19) 
 
 cos sinB B

ˆ ˆB Bθ θ= +B i j


 (A.1.20) 
 
In Figure A.1.13, the vector addition = +C A B

  

 is shown. Let

 

θC  denote the angle that the 
vector C



 makes with the positive x-axis.  
 

 
 

Figure A.1.13 Vector addition with components 
 
Then the components of C



 are  
 
 x x x y y yC A B , C A B= + = +  (A.1.21) 
 
In terms of magnitudes and angles, we have  
 

 
cos cos cos
sin sin sin

x C A B

y C A B

C C A B
C C A B

θ θ θ
θ θ θ

= = +
= = +

 (A.1.22) 

 
We can write the vector C



 as  
 

 ( ) ( ) (cos sin )x x y y C C
ˆ ˆ ˆ ˆA B A B C θ θ= + + + = +C i j i j



 (A.1.23) 
 
 
A.2 Dot Product (link) 
 
A.2.1 Introduction 
 
We shall now introduce a new vector operation, called the “dot product” or “scalar 
product” that takes any two vectors and generates a scalar quantity (a number). We shall 
see that the physical concept of work can be mathematically described by the dot product 
between the force and the displacement vectors. 

http://web.mit.edu/viz/EM/visualizations/vectorfields/DotCrossProduct/DotProduct/dotProd.htm�
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Let A


 and B


 be two vectors. Since any two non-collinear vectors form a plane, we 
define the angle 

 

θ  to be the angle between the vectors A


 and B


 as shown in Figure 
A.2.1. Note that 

 

θ  can vary from 

 

0 to

 

π . 
 

 
Figure A.2.1 Dot product geometry. 

 
A.2.2 Definition 
 
The dot product ⋅A B

 

 of the vectors A


 and B


 is defined to be product of the magnitude 
of the vectors A



 and B


 with the cosine of the angle 

 

θ  between the two vectors: 
 
 cosAB θ⋅ =A B

 

 (A.2.1) 
 
Where | |A = A



 and | |B = B


 represent the magnitude of A


 and B


 respectively.  The dot 
product can be positive, zero, or negative, depending on the value of 

 

cosθ . The dot 
product is always a scalar quantity. 
 
We can give a geometric interpretation to the dot product by writing the definition as  
 
 ( cos )A Bθ⋅ =A B

 

 (A.2.2) 
 
In this formulation, the term cosA θ  is the projection of the vector A



 in the direction of 
the vector B



. This projection is shown in Figure A.2.2a. So the dot product is the product 
of the projection of the length of A



 in the direction of B


 with the length of B


. Note that 
we could also write the dot product as  
 
 ( cos )A B θ⋅ =A B

 

 (A.2.3) 
 
 
Now the term cosB θ  is the projection of the vector B



 in the direction of the vector A


 as 
shown in Figure A.2.2b.From this perspective, the dot product is the product of the 
projection of the length of B



 in the direction of A


 with the length of A


. 
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Figure A.2.2a and A.2.2b Projection of vectors and the dot product. 
 
From our definition of the dot product we see that the dot product of two vectors that are 
perpendicular to each other is zero since the angle between the vectors is / 2π  and 
cos( / 2) 0π = .  
 
A.2.3 Properties of Dot Product 
  
The first property involves the dot product between a vector cA



 where c is a scalar and a 
vector B



, 
 
(1a) ( )c c⋅ = ⋅A B A B

  

 (A.2.4) 
 
The second involves the dot product between the sum of two vectors A



 and B


 with a 
vector C



, 
 
(2a) ( )+ ⋅ = ⋅ + ⋅A B C A C B C

     

 (A.2.5) 
 
 
Since the dot product is a commutative operation  
 
 ⋅ = ⋅A B B A

  

 (A.2.6) 
 
the similar definitions hold 
 
(1b) ( )c c⋅ = ⋅A B A B

  

 (A.2.7) 
 
(2b) ( )⋅ + = ⋅ + ⋅C A B C A C B

     

 (A.2.8) 
 
 
A.2.4 Vector Decomposition and the Dot Product 
 
With these properties in mind we can now develop an algebraic expression for the dot 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
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vector B


 pointing along the positive x -axis with positive x -component 

 

Bx, i.e., ˆ
xB=B i



.  
The vector A



 can be written as  
 
 ˆ ˆ ˆ

x y zA A A= + +A i j k


 (A.2.9) 
 

We first calculate that the dot product of the unit vector î  with itself is unity: 
  
 ˆ ˆ ˆ ˆ| || | cos(0) 1⋅ = =i i i i  (A.2.10) 
 
since the unit vector has magnitude 1ˆ| |=i   and cos(0) 1= . We note that the same rule 
applies for the unit vectors in the y and z directions: 
 
 ˆ ˆ ˆ ˆ 1⋅ = ⋅ =j j k k  (A.2.11) 

 
The dot product of the unit vector î  with the unit vector ĵ  is zero because the two unit 
vectors are perpendicular to each other: 
 

 
cos( /2) 0ˆ ˆ ˆ ˆ| || | π⋅ = =i j i j  (A.2.12) 

 
Similarly, the dot product of the unit vector î  with the unit vector k̂ , and the unit vector 
ĵ  with the unit vector k̂  are also zero: 
 
 0ˆ ˆˆ ˆ⋅ = ⋅ =i k j k  (A.2.13) 
 
The dot product of the two vectors now becomes 
 

 

ˆ ˆ ˆˆ( )
ˆ ˆ ˆ ˆ ˆˆ      property (2a)

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )    property (1a) and (1b)

x y z x

x x y x z x

x x y x z x

x x

A A A B

A B A B A B

A B A B A B
A B

⋅ = + + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

=

A B i j k i

i i j i k i

i i j i k i

 

 (A.2.14) 

 
This third step is the crucial one because it shows that it is only the unit vectors that 
undergo the dot product operation.  
 
Since we assumed that the vector B



 points along the positive x -axis with positive x -
component 

 

Bx, our answer can be zero, positive, or negative depending on the x -
component of the vector A



.  In Figure A.2.3, we show the three different cases. 
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Figure A.2.3 Dot product that is (a) positive, (b) zero or (c) negative. 
 
The result for the dot product can be generalized easily for arbitrary vectors 
 
 x y z

ˆ ˆ ˆA A A= + +A i j k


 (A.2.15) 
 
and  
 
 x y z

ˆ ˆ ˆB B B= + +B i j k


 (A.2.16) 
to yield 
 
 x x y y z zA B A B A B⋅ = + +A B

 

 (A.2.17) 
 
A.3 Cross Product (link) 
 
We shall now introduce our second vector operation, called the “cross product” that takes 
any two vectors and generates a new vector. The cross product is a type of 
“multiplication” law that turns our vector space (law for addition of vectors) into a vector 
algebra (laws for addition and multiplication of vectors). The first application of the cross 
product will be the physical concept of torque about a point 

 

P  which can be described 
mathematically by the cross product of a vector from

 

P  to where the force acts, and the 
force vector. 
 
A.3.1 Definition: Cross Product 
  
Let A



 and B


 be two vectors. Since any two vectors form a plane, we define the angle 

 

θ  
to be the angle between the vectors A



 and B


 as shown in Figure A.3.2.1. The magnitude 
of the cross product ×A B

 

 of the vectors A


 and B


 is defined to be product of the 
magnitude of the vectors A



 and B


 with the sine of the angle 

 

θ  between the two vectors,  
 
 sinAB θ× =A B

 

 (A.3.1) 

 

http://web.mit.edu/viz/EM/visualizations/vectorfields/DotCrossProduct/CrossProduct/crossProd.htm�
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where A and B denote the magnitudes of A


and B


, respectively. The angle

 

θ  between the 
vectors is limited to the values 

 

0 ≤θ ≤ π  insuring that 

 

sinθ ≥ 0. 
 

 
 

Figure A.3.1 Cross product geometry. 
 

The direction of the cross product is defined as follows. The vectors A


 and B


 form a 
plane. Consider the direction perpendicular to this plane. There are two possibilities, as 
shown in Figure A.3.1. We shall choose one of these two for the direction of the cross 
product ×A B

 

 using a convention that is commonly called the “right-hand rule”. 
 
A.3.2 Right-hand Rule for the Direction of Cross Product 

 
The first step is to redraw the vectors A



 and B


 so that their tails are touching. Then draw 
an arc starting from the vector A



 and finishing on the vector B


. Curl your right fingers 
the same way as the arc. Your right thumb points in the direction of the cross product 

×A B
 

 (Figure A.3.2).  
 

 
 

Figure A.3.2 Right-Hand Rule. 
 
You should remember that the direction of the cross product ×A B

 

 is perpendicular to the 
plane formed by A



 and B


.  
 
We can give a geometric interpretation to the magnitude of the cross product by writing 
the definition as  
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 ( )sinA B θ× =A B
 

 (A.3.2) 

 
The vectors A



 and B


 form a parallelogram. The area of the parallelogram equals the 
height times the base, which is the magnitude of the cross product. In Figure A.3.3, two 
different representations of the height and base of a parallelogram are illustrated. As 
depicted in Figure A.3.3(a), the term sinB θ  is the projection of the vector B



 in the 
direction perpendicular to the vector A



. We could also write the magnitude of the cross 
product as  
 
 ( sin )A Bθ× =A B

 

 (A.3.3) 

 
Now the term sinA θ  is the projection of the vector A



 in the direction perpendicular to 
the vector B



 as shown in Figure A.3.3(b).  
 

  
 

Figure A.3.3 Projection of vectors and the cross product 
 
The cross product of two vectors that are parallel (or anti-parallel) to each other is zero 
since the angle between the vectors is 0  (or π ) and sin(0) 0=  (or sin( ) 0π = ). 
Geometrically, two parallel vectors do not have any component perpendicular to their 
common direction. 
 
A.3.3 Properties of the Cross Product 
  
(1) The cross product is anti-commutative since changing the order of the vectors cross 

product changes the direction of the cross product vector by the right hand rule: 
 
 × = − ×A B B A

  

 (A.3.4) 
 

(2) The cross product between a vector cA


 where c is a scalar and a vector B


 is 
 
 ( )c c× = ×A B A B

  

 (A.3.5) 
 
Similarly, 
 ( )c c× = ×A B A B

  

 (A.3.6) 
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(3) The cross product between the sum of two vectors A



 and B


 with a vectorC


 is 
 
 ( )+ × = × + ×A B C A C B C

     

 (A.3.7) 
 
Similarly, 
 
 ( )× + = × + ×A B C A B A C

     

 (A.3.8) 
 
 
A.3.4 Vector Decomposition and the Cross Product 
 
We first calculate that the magnitude of cross product of the unit vector î  with ĵ : 
  

 ˆ ˆ ˆ ˆ| | | || | sin 1
2
π × = = 

 
i j i j  (A.3.9) 

 
since the unit vector has magnitude ˆ ˆ| | | | 1= =i j  and sin( / 2) 1π = . By the right hand rule, 
the direction of ˆ ˆ×i j  is in the ˆ+k  as shown in Figure A.3.4.  Thus ˆ ˆ ˆ× =i j k . 
 

 
Figure A.3.4 Cross product of ˆ ˆ×i j  

 
We note that the same rule applies for the unit vectors in the y and z directions, 
 
 ˆ ˆ ˆ ˆˆ ˆ,× = × =j k i k i j   (A.3.10) 
 
Note that by the anti-commutatively property (1) of the cross product, 
 
 ˆ ˆ ˆ ˆˆ ˆ,× = − × = −j i k i k j  (A.3.11) 
 
The cross product of the unit vector î  with itself is zero because the two unit vectors are 
parallel to each other, ( sin(0) 0= ), 
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 ˆ ˆ ˆ ˆ| | | || | sin(0) 0× = =i i i i  (A.3.12) 
 
The cross product of the unit vector ĵ  with itself and the unit vector k̂  with itself, are also 
zero for the same reason. 
 
 0 0ˆ ˆ ˆ ˆ,× = × =j j k k  (A.3.13) 

 
With these properties in mind we can now develop an algebraic expression for the cross 
product in terms of components. Let’s choose a Cartesian coordinate system with the 
vector B



 pointing along the positive x-axis with positive x-component 

 

Bx. Then the 
vectors A



 and B


 can be written as  
 
 x y z

ˆ ˆ ˆA A A= + +A i j k


 (A.3.14) 
and 
 x̂B=B i



 (A.3.15) 
 

respectively. The cross product in vector components is 
 
 ( )x y z x

ˆ ˆ ˆˆA A A B× = + + ×A B i j k i
 

 (A.3.16) 
 

This becomes, using properties (3) and (2),   
 

 

ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( )

ˆˆ

x x y x z x

x x y x z x

y x z x

A B A B A B

A B A B A B

A B A B

× = × + × + ×

= × + × + ×

= − +

A B i i j i k i

i i j i k i

k j

 

 (A.3.17) 

 
The vector component expression for the cross product easily generalizes for arbitrary 
vectors 
 
 x y z

ˆ ˆ ˆA A A= + +A i j k


 (A.3.18) 
 
and 

 x y z
ˆ ˆ ˆB B B= + +B i j k



 (A.3.19) 

 
to yield 
 
 ˆ ˆ ˆ( ) ( ) ( )y z z y z x x z x y y xA B A B A B A B A B A B× = − + − + −A B i j k

 

. (A.3.20) 
 
 



 B.  Coordinate Systems 

B. Coordinate Systems (link) 
 
 
B.1 Cartesian Coordinates 
 
A coordinate system consists of four basic elements: 
 

(1) Choice of origin 

(2) Choice of axes 

(3) Choice of positive direction for each axis 

(4) Choice of unit vectors for each axis 

 

We illustrate these elements below using Cartesian coordinates. 
 
(1) Choice of Origin 
 
Choose an origin

 

O . If you are given an object, then your choice of origin may coincide 
with a special point in the body. For example, you may choose the mid-point of a straight 
piece of wire.  
 
(2) Choice of Axis 
 
Now we shall choose a set of axes. The simplest set of axes are known as the Cartesian 
axes, x -axis, y -axis, and the z -axis. Once again, we adapt our choices to the physical 
object. For example, we select the x -axis so that the wire lies on the x -axis, as shown in 
Figure B.1.1: 
 

 
 

Figure B.1.1 A wire lying along the x-axis of Cartesian coordinates. 
 

http://web.mit.edu/viz/EM/visualizations/vectorfields/CoordinateSystems/coordsystems.htm�
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Then each point 

 

P  in space our 

 

S  can be assigned a triplet of values 

 

(xP, yP,zP ), the 
Cartesian coordinates of the point

 

P .  The ranges of these values are: 

 

−∞ < xP < +∞, 

 

−∞ < yP < +∞, 

 

−∞ < zP < +∞ .  
 
The collection of points that have the same the coordinate Py  is called a level surface.  
Suppose we ask what collection of points in our space 

 

S  have the same value of Py y= . 
This is the set of points { }( , , ) such that

Py PS x y z S y y= ∈ = . This set 
PyS  is a plane, the 

-x z plane (Figure B.1.2), called a level set for constant Py . Thus, the y -coordinate of any 
point actually describes a plane of points perpendicular to the y -axis. 

 

 
Figure B.1.2 Level surface set for constant value Py . 

 
(3) Choice of Positive Direction 
 
Our third choice is an assignment of positive direction for each coordinate axis. We shall 
denote this choice by the symbol + along the positive axis. Conventionally, Cartesian 
coordinates are drawn with the -x y plane corresponding to the plane of the paper. The 
horizontal direction from left to right is taken as the positive x -axis, and the vertical 
direction from bottom to top is taken as the positive y -axis. In physics problems we are 
free to choose our axes and positive directions any way that we decide best fits a given 
problem. Problems that are very difficult using the conventional choices may turn out to 
be much easier to solve by making a thoughtful choice of axes. The endpoints of the wire 
now have the coordinates ( / 2,0,0)a and ( / 2,0,0)a− . 
 
(4) Choice of Unit Vectors 
 
We now associate to each point 

 

P  in space, a set of three unit directions vectors 
( )P P P
ˆ ˆ ˆ, ,i j k .  A unit vector has magnitude one: 1P

ˆ =i , 1P
ˆ =j , and 1P

ˆ =k . We 

assign the direction of Pî  to point in the direction of the increasing x -coordinate at the 
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point 

 

P . We define the directions for Pĵ  and Pk̂  in the direction of the increasing y -
coordinate and z -coordinate respectively. (Figure B.1.3). 
 

 
 

Figure B.1.3 Choice of unit vectors. 
 

B.1.1 Infinitesimal Line Element 
 
Consider a small infinitesimal displacement d s between two points P1 and P2 (Figure 
B.1.4). In Cartesian coordinates this vector can be decomposed into  
 
 ˆ ˆ ˆd dx dy dz= + +s i j k  (B.1.1) 

 

 
 

Figure B.1.4 Displacement between two points 
 

B.1.2 Infinitesimal Area Element 
 
An infinitesimal area element of the surface of a small cube (Figure B.1.5) is given by 
 
 ( )( )dA dx dy=  (B.1.2) 
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Figure B.1.5 Area element for one face of a small cube 
 
Area elements are actually vectors where the direction of the vector dA



 is perpendicular 
to the plane defined by the area. Since there is a choice of direction, we shall choose the 
area vector to always point outwards from a closed surface, defined by the right-hand 
rule. So for the above, the infinitesimal area vector is 
 
 ˆd dx dy=A k



 (B.1.3) 
 

B.1.3 Infinitesimal Volume Element  
 
An infinitesimal volume element (Figure B.1.6) in Cartesian coordinates is given by 
 
 dV dx dy dz=  (B.1.4) 
 

 
Figure B.1.6 Volume element in Cartesian coordinates. 

 
B.2 Cylindrical Coordinates 
 
We first choose an origin and an axis we call the z -axis with unit vector ẑ  pointing in 
the increasing z-direction. The level surface of points such that Pz z=  define a plane. We 
shall choose coordinates for a point P in the plane Pz z= as follows.  
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The coordinate ρ measures the distance from the z -axis to the point P . Its value ranges 
from 0 ρ≤ < ∞ . In Figure B.2.1 we draw a few contours that have constant values of ρ . 
These “level contours” are circles. On the other hand, if z were not restricted to Pz z= , as 
in Figure B.2.1, the level surfaces for constant values of ρ  would be cylinders coaxial 
with the z-axis. 
 

 
 

Figure B.2.1 Level surfaces for the coordinate ρ . 
 
Our second coordinate measures an angular distance along the circle. We need to choose 
some reference point to define the angular coordinate. We choose a “reference ray,” a 
horizontal ray starting from the origin and extending to +∞  along the horizontal 
direction to the right. (In a typical Cartesian coordinate system, our reference ray is the 
positive x-direction). We define the angle coordinate for the point P  as follows. We 
draw a ray from the origin to P . We define φ  as the angle in the counterclockwise 
direction between our horizontal reference ray and the ray from the origin to the point P , 
(see Figure B.2.2): 
 

 
 

Figure B.2.2 The angular coordinate 
 
All the other points that lie on a ray from the origin to infinity passing through P  have 
the same value of φ . For any arbitrary point, φ  can take on values from 0 2φ π≤ < .  In 
Figure B.2.3 we depict other “level surfaces” for the angular coordinate.  
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Figure B.2.3 Level surfaces for the angle coordinate. 

 
The coordinates ( , )ρ φ  in the plane Pz z=  are called plane polar coordinates. We 
choose two unit vectors in the plane at the point P  as follows. We choose ρ̂  to point in 
the direction of increasing ρ , radially away from the z-axis. We choose φ̂  to point in 
the direction of increasingφ . This unit vector points in the counterclockwise direction, 
tangent to the circle. Our complete coordinate system is shown in Figure B.2.4. This 
coordinate system is called a “cylindrical coordinate system.” Essentially we have chosen 
two directions, radial and tangential in the plane and a perpendicular direction to the 
plane. 

 
Figure B.2.4 Cylindrical coordinates 

  
When referring to any arbitrary point in the plane, we write the unit vectors as ρ̂  and φ̂ , 
keeping in mind that they may change in direction as we move around the plane, keeping 
ẑ unchanged. If we need to make a reference to this time changing property, we will write 
the unit vectors as explicit functions of time, ˆ ( )tρ  and ˆ ( )tφ .  
 
If you are given polar coordinates ( , )ρ φ  of a point in the plane, the Cartesian 
coordinates ( , )x y can be determined from the coordinate transformations: 
 
 cos , sinx yρ φ ρ φ= =  (B.2.1) 
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Conversely, if you are given the Cartesian coordinates ( , )x y , the polar coordinates 
( , )ρ φ  may be represented as 
 
 2 2 1 2 1( ) , tan ( / )x y y xρ φ −= + + =  (B.2.2) 
 
 
Note that 0ρ ≥ so you always need to take the positive square root. Note also that 
tan tan( )φ φ π= + . Suppose that 0 2φ π≤ ≤ , then 0x ≥  and 0y ≥ . Then the point 
( , )x y− − will correspond to the angle φ π+ . 
 
The unit vectors also are related by the coordinate transformations  
 
 ˆ ˆ ˆ ˆˆ ˆcos sin , sin cosφ φ φ φ= + = − +ρ i j φ i j  (B.2.3) 
 
Similarly,  
 
 ˆ ˆˆ ˆ ˆ ˆcos sin , sin cosφ φ φ φ= − = +iρ φ j ρ φ  (B.2.4) 
 
The crucial difference between cylindrical coordinates and Cartesian coordinates involves 
the choice of unit vectors.  Suppose we consider a different point 1P  in the plane. The 

unit vectors in Cartesian coordinates 1 1
ˆ ˆ( , )i j  at the point 1P  have the same magnitude 

and point in the same direction as the unit vectors 2 2
ˆ ˆ( , )i j  at 2P . Any two vectors that are 

equal in magnitude and point in the same direction are equal; therefore  
 
 1 2 1 2

ˆ ˆ ˆ ˆ,= =i i j j  (B.2.5) 
 

A Cartesian coordinate system is the unique coordinate system in which the set of unit 
vectors at different points in space are equal.  In polar coordinates, the unit vectors at two 
different points are not equal because they point in different directions. We show this in 
Figure B.2.5. 

 
 

Figure B.2.5 Unit vectors at two different points in polar coordinates.  
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B.2.1 Infinitesimal Line Element 
 
Consider a small infinitesimal displacement d s  between two points P1 and P2 (Figure 
B.2.6). This vector can be decomposed into  
 

 
Figure B.2.6 displacement vector d s  between two points 

 
 ˆˆ ˆd d d dzρ ρ φ= + +sρ φ k  (B.2.6) 
 

B.2.2 Infinitesimal Area Element 
 
Consider an infinitesimal area element on the surface of a cylinder of radius ρ  (Figure 
B.2.7).  

 
 

Figure B.2.7 Area element for a cylinder 
 
The area of this element has magnitude 
 
 dA d dzρ φ=  (B.2.7) 
 



 B.  Coordinate Systems 8 

Area elements are actually vectors where the direction of the vector dA


 points 
perpendicular to the plane defined by the area. Since there is a choice of direction, we 
shall choose the area vector to always point outwards from a closed surface. So for the 
surface of the cylinder, the infinitesimal area vector is 
 
 ˆd d dzρ φ=Aρ



 (B.2.8) 
 
Consider an infinitesimal area element on the surface of a disc (Figure B.2.8) in the 

-x y plane.  

 
 

Figure B.2.8 Area element for a disc. 
 
This area element is given by the vector 
 
 ˆd d dρ φ ρ=A k



 (B.2.9) 
 

B.2.3 Infinitesimal Volume Element  
 
An infinitesimal volume element (Figure B.2.9) is given by 
 
 dV d d dzρ φ ρ=  (B.2.10) 
 

 
 

Figure B.2.9 Volume element for a cylinder. 
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B.3 Spherical Coordinates 
 
We first choose an origin. Then we choose a coordinate, r , that measures the radial 
distance from the origin to the point P . The coordinate r  ranges in value from 
0 r≤ < ∞ . The set of points that have constant value for r  are spheres (“level surfaces”).  
  
Any point on the sphere can be defined by two angles ( , )θ φ and r. We will define these 
angles with respect to a choice of Cartesian coordinates ( , , )x y z . The angle θ  is defined 
to be the angle between the positive z -axis and the ray from the origin to the point P . 
Note that the values of θ  only range from 0 θ π≤ ≤ . The angle φ  is defined (in a 
similar fashion to polar coordinates) as the angle in the between the positive x -axis and 
the projection in the -x y  plane of the ray from the origin to the point P . The coordinate 
angle φ  can take on values from 0 2φ π≤ < . 
  
The spherical coordinates ( , , )r θ φ for the point P  are shown in Figure B.3.1. We choose 
the unit vectors ˆˆ ˆ( , , )rθ φ  at the point P  as follows. Let r̂  point radially away from the 
origin, and θ̂  point tangent to a circle in the positiveθ  direction in the plane formed by 
the z -axis and the ray from the origin to the point P . Note that θ̂  points in the 
direction of increasing θ . We choose φ̂  to point in the direction of increasingφ . This 
unit vector points tangent to a circle in the xy − plane centered on the z -axis. These unit 
vectors are also shown in Figure B.3.1. 
 

 
Figure B.3.1 Spherical coordinates 

   
If you are given spherical coordinates ( , , )r θ φ  of a point in the plane, the Cartesian 
coordinates ( , , )x y z can be determined from the coordinate transformations 
 

 
sin cos
sin sin
cos

x r
y r
z r

θ φ
θ φ
θ

=
=
=

 (B.3.1) 

 



 B.  Coordinate Systems 10 

 
Conversely, if you are given the Cartesian coordinates ( , , )x y z , the spherical coordinates 
( , , )r θ φ  can be determined from the coordinate transformations 
 

 

2 2 2 1 2

1
2 2 2 1 2

1

( )

cos
( )

tan ( )

r x y z

z
x y z

y x

θ

φ

−

−

= + + +

 
=  + + 
=

 (B.3.2) 

 
 
The unit vectors also are related by the coordinate transformations  
  

 

ˆ ˆ ˆˆ sin cos sin sin cos
ˆ ˆ ˆ ˆcos cos cos sin sin

ˆ ˆˆ sin cos

θ φ θ φ θ

θ φ θ φ θ

φ φ

= + +

= + −

= − +

r i j k

θ i j k

φ i j

 (B.3.3) 

 
These results can be understood by considering the projection of ˆˆ( , )rθ  into the unit 
vectors ˆˆ( , )ρ k , where ρ̂  is the unit vector from cylindrical coordinates (Figure B.3.2), 
 

 

 
 

Figure B.3.2 Cylindrical and spherical unit vectors 
 

 
ˆˆ ˆsin cos

ˆ ˆˆcos sin

θ θ

θ θ

= +

= −

rρ k

θ ρ k
 (B.3.4) 

 
We can use the vector decomposition of ρ̂  into the Cartesian unit vectors ˆ ˆ( , )i j : 
 
 ˆ ˆˆ cos sinφ φ= +ρ i j  (B.3.5) 
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To find the inverse transformations we can use the fact that  
 
 ˆˆ ˆsin cosθ θ= +ρ r θ  (B.3.6) 
 
to express 

 
ˆ ˆ ˆcos sin
ˆ ˆ ˆsin cos

φ φ

φ φ

= −

= +

iρ φ

jρ φ
 (B.3.7) 

 
 
as  

 
ˆ ˆˆ ˆcos sin cos cos sin
ˆ ˆˆ ˆsin sin sin cos cos

φ θ φ θ φ

φ θ φ θ φ

= + −

= + +

i rθ φ

j rθ φ
 (B.3.8) 

 
The unit vector k̂ can be decomposed directly into ˆˆ( , )rθ with the result that  
 
 ˆˆ ˆcos sinθ θ= −k rθ   (B.3.9) 
 

B.3.1 Infinitesimal Line Element 
 
Consider a small infinitesimal displacement d s  between two points (Figure B.3.3). This 
vector can be decomposed into  
 
 ˆˆ ˆsind dr rd r d= + +s rθ φ θ θ φ  (B.3.10) 
 

 
 

Figure B.3.3 Infinitesimal displacement vector d s . 
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B.3.2 Infinitesimal Area Element  
 
Consider an infinitesimal area element on the surface of a sphere of radius r  (Figure 
B.3.4).  

 

 
Figure B.3.4 Area element for a sphere. 

 
The area of this element has magnitude 
 
 2( )( sin ) sindA rd r d r d d= =θ θ φ θ θ φ  (B.3.11) 
 
points in the radially direction (outward from the surface of the sphere). So for the surface 
of the sphere, the infinitesimal area vector is 
 
 2 ˆsind r d dθ θ φ=A r



 (B.3.12) 
 

B.3.3 Infinitesimal Volume Element 
 
An infinitesimal volume element (Figure B.3.5) is given by 
 
 2 sindV r d d drθ θ φ=  (B.3.13) 
 

 
Figure B.3.5 Infinitesimal volume element. 
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