Electric Potential and Gauss's Law, Configuration Energy Challenge Problems

Problem 1:

Consider a very long rod, radius R and charged to a uniform linear charge density λ.
a) Calculate the electric field everywhere outside of this rod (i.e. find $\overrightarrow{\mathbf{E}}(\overrightarrow{\mathbf{r}})$).
b) Calculate the electric potential everywhere outside, where the potential is defined to be zero at a radius $R_{0}>R$ (i.e. $V\left(R_{0}\right) \equiv 0$)

Problem 2:

Estimate the largest voltage at which it's reasonable to hold high voltage power lines. Then check out this video, care of a Boulder City, Nevada power company. Air ionizes when electric fields are on the order of $3 \times 10^{6} \mathrm{~V} \cdot \mathrm{~m}^{-1}$.

Problem 3:

Consider a uniformly charged sphere of radius R and charge Q. Find the electric potential difference between any point lying on a sphere of radius r and the point at the origin, i.e. $V(r)-V(0)$. Choose the zero reference point for the potential at $r=0$, i.e. $V(0)=0$. How does your expression for $V(r)$ change if you chose the zero reference point for the potential at $r=\infty$, i.e. $V(\infty)=0$.

Problem 4:

An infinite slab of charge carrying a charge per unit volume ρ has a charged sheet carrying charge per unit area σ_{1} to its left and a charged sheet carrying charge per unit area σ_{2} to its right (see top part of sketch). The lower plot in the sketch shows the electric potential $V(x)$ in volts due to this slab of charge and the two charged sheets as a function of horizontal distance x from the center of the slab. The slab is 4 meters wide in the x-direction, and its boundaries are located at $x=-2 \mathrm{~m}$ and $x=+2 \mathrm{~m}$, as indicated. The slab is infinite in the y direction and in the z direction (out of the page). The charge sheets are located at $x=-6 \mathrm{~m}$ and $x=+6 \mathrm{~m}$, as indicated.
(a) The potential $V(x)$ is a linear function of x in the region $-6 \mathrm{~m}<x<-2 \mathrm{~m}$. What is the electric field in this region?
(b) The potential $V(x)$ is a linear function of x in the region $2 \mathrm{~m}<x<6 \mathrm{~m}$. What is the electric field in this region?
(c) In the region $-2 \mathrm{~m}<x<2 \mathrm{~m}$, the potential $V(x)$ is a quadratic function of x given by the equation $V(x)=\frac{5}{16} x^{2} \frac{\mathrm{~V}}{m^{2}}-\frac{25}{4} \mathrm{~V}$. What is the electric field in this region?
(d) Use Gauss's Law and your answers above to find an expression for the charge density ρ of the slab. Indicate the Gaussian surface you use on a figure.

(e) Use Gauss's Law and your answers above to find the two surface charge densities of the left and right charged sheets. Indicate the Gaussian surface you use on a figure.

Problem 5:

Three infinite sheets of charge are located at $x=-d, x=0$, and $x=d$, as shown in the sketch. The sheet at $x=0$ has a charge per unit area of 2σ, and the other two sheets have charge per unit area of $-\sigma$.

a) What is the electric field in each of the four regions I-IV labeled in the sketch? Clearly present your reasoning, relevant figures, and any accompanying calculations. Plot the x component of the electric field, E_{x}, on the graph on the bottom of the next page. Clearly indicate on the vertical axis the values of E_{x} for the different regions.
b) Find the electric potential in each of the four regions I-IV labeled above, with the choice that the potential is zero at $x=+\infty$ i.e. $V(+\infty)=0$. Show your calculations. Plot the electric potential as a function of x on the graph on the bottom of the next page. Indicate units on the vertical axis.
c) How much work must you do to bring a point-like object with charge $+Q$ in from infinity to the origin $x=0$?

Problem 6:

You may find the following integrals helpful in this answering this question.

$$
\int_{r_{a}}^{r_{b}} r^{n} d r=\frac{1}{n+1}\left(r_{b}^{n+1}-r_{a}^{n+1}\right) ; n \neq 1, \quad \int_{r_{a}}^{r_{b}} \frac{d r}{r}=\ln \left(r_{b} / r_{a}\right)
$$

Consider a charged infinite cylinder of radius R.

The charge density is non-uniform and given by

$$
\rho(r)=b r ; r<R,
$$

where r is the distance from the central axis and b is a constant.
a) Find an expression for the direction and magnitude of the electric field everywhere i.e. inside and outside the cylinder. Clearly present your reasoning, relevant figures, and any accompanying calculations.
b) A point-like object with charge $+q$ and mass m is released from rest at the point a distance $2 R$ from the central axis of the cylinder. Find the speed of the object when it reaches a distance $3 R$ from the central axis of the cylinder.

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

