Module 08: Electric Potential and Gauss's Law; Configuration Energy

Module 08: Outline

Deriving E from V
Using Gauss's Law to find V from E
Configuration Energy

E Field and Potential: Creating

A point charge q creates a field and potential around it:

$$
\overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}} ; V=k_{e} \frac{q}{r} \quad \begin{aligned}
& \text { Use superposition for } \\
& \text { systems of charges }
\end{aligned}
$$

They are related:

$$
\overrightarrow{\mathbf{E}}=-\nabla V ; \Delta V \equiv V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}
$$

E Field and Potential: Effects

If you put a charged particle, (charge q), in a field:

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}
$$

To move a charged particle, (charge q), in a field and the particle does not change its kinetic energy then:

$$
W_{e x t}-\Delta U-q \Delta V
$$

Deriving E from V

Deriving E from V

$$
\begin{aligned}
& \Delta V=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \\
& \mathrm{~A}=(\mathrm{x}, \mathrm{y}, \mathrm{z}), \mathrm{B}=(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y}, \mathrm{z}) \\
& \Delta \overrightarrow{\mathbf{s}}=\Delta x \hat{\mathbf{i}} \\
& \Delta V=-\int_{(x, y, z)}^{(x+\Delta x, y, z)} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}} \cong-\overrightarrow{\mathbf{E}} \cdot \Delta \overrightarrow{\mathbf{s}}=-\overrightarrow{\mathbf{E}} \cdot(\Delta x \hat{\mathbf{i}})=-E_{x} \Delta x \\
& E_{x} \cong-\frac{\Delta V}{\Delta x}--\frac{\partial V}{\partial x} \quad \begin{array}{c}
\mathbf{E}_{\mathrm{x}}=\text { Rate of change in } \mathbf{v} \\
\text { with } \mathbf{y} \text { and } \mathrm{z} \text { held constant }
\end{array}
\end{aligned}
$$

Deriving E from V

If we do all coordinates:

$$
\begin{aligned}
\overrightarrow{\mathbf{E}} & =-\left(\frac{\partial V}{\partial x} \hat{\mathbf{i}}+\frac{\partial V}{\partial y} \hat{\mathbf{j}}+\frac{\partial V}{\partial z} \hat{\mathbf{k}}\right) \\
& =-\left(\frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}\right) V
\end{aligned}
$$

$$
\overrightarrow{\mathbf{E}}=-\nabla V
$$

Gradient (del) operator:

$$
\nabla \equiv \frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}
$$

Concept Question Question: E from V

Concept Question: E from V

 Consider the point charges you looked at earlier:

$$
V(P)=-k Q / a
$$

You calculated $V(P)$. From that can you derive $E(P)$?

1. Yes, its $k Q / a^{2}$ (up)
2. Yes, its $k Q / a^{2}$ (down)
3. Yes in theory, but I don't know how to take a gradient
4. No, you can't get $E(P)$ from $V(P)$
5. I don't know

Problem: E from V

A potential $\mathrm{V}(x, y, z)$ is plotted above. It does not depend on x or y.
What is the electric field everywhere?
Are there charges anywhere? What sign?

Demonstration: Making \& Measuring Potential (Lab Preview)

Two Concept Question Questions: Potential \& E Field

Concept Question: E from V

The graph above shows a potential V as a function of x. The magnitude of the electric field for $x>0$ is

1. larger than that for $x<0$
2. smaller than that for $x<0$
3. equal to that for $x<0$
4. I don't know

Concept Question: E from V

The above shows potential $\mathrm{V}(\mathrm{x})$. Which is true?

1. $E_{x>0}$ is >0 and $E_{x<0}$ is >0
2. $\mathrm{E}_{\mathrm{x}>0}$ is >0 and $\mathrm{E}_{\mathrm{x}<0}$ is <0
3. $E_{x>0}$ is <0 and $E_{x<0}$ is <0
4. $E_{x>0}$ is <0 and $E_{x<0}$ is >0
5. I don't know

Potential from E

Potential for Nested Shell」

From Gauss's Law
$\overrightarrow{\mathbf{E}}=$
$\left\{\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, a<r<b\right.$
0 , elsewhere
Use $V_{B}-V_{A}=-\int_{A}^{B} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{s}}$
Region 1: $r>b$

$$
V(r)-\underbrace{V(\infty)}_{=0}=-\int_{\infty}^{r} 0 d r=0
$$

No field \rightarrow

Potential for Nested Shells

Region 2: $a<r<b$

$$
V(r)-\underbrace{V(r=b)}_{=0}=-\int_{b}^{r} d r \frac{Q}{4 \pi \varepsilon_{0} r^{2}}
$$

$$
=\left.\frac{Q}{4 \pi \varepsilon_{0} r}\right|_{r=b} ^{r}
$$

$$
=\frac{1}{4 \pi \varepsilon_{0}} Q\left(\frac{1}{r}-\frac{1}{b}\right)
$$

Electric field is just a point charge.
Electric potential is DIFFERENT - surroundings matter

Potential for Nested Shells

Region 3: $r<a$

$$
\begin{aligned}
& V(r)-\underbrace{V(r=a)}_{=k Q\left(\frac{1}{a}-\frac{1}{b}\right)}=-\int_{a}^{r} d r 0=0 \\
& V(r)=V(a)=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)
\end{aligned}
$$

Again, potential is CONSTANT since $E=0$.

Configuration Energy

Configuration Energy

How much energy to put two charges as pictured?

1) First charge is free
2) Second charge sees first:

$$
U_{12}=W_{2}=q_{2} V_{1}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{r_{12}}
$$

Configuration Energy

How much energy to put three charges as pictured?

1) Know how to do first two
2) Bring in third:
$W_{3}-q_{3}\left(V_{1}+V_{2}\right)-\frac{q_{3}}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r_{13}}+\frac{q_{2}}{r_{23}}\right)$

Total configuration energy:

$$
U=W_{2}+W_{3}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)=U_{12}+U_{13}+U_{23}
$$

Problem: Build It

1) How much energy did it take to assemble the charges at left?

2) How much energy would it take to add a $4^{\text {th }}$ charge $+3 Q$ at P ?

MIT OpenCourseWare
|http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

