Module 29: Energy and Momentum in EM Waves

Module 29: Outline

Energy and Momentum in EM Waves

Summary: Traveling Electromagnetic Waves

Properties of EM Waves

Travel (through vacuum) with speed of light

$$
v=c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

At every point in the wave and any instant of time, E and B are in phase with one another, with

$$
\frac{E}{B}=\frac{E_{0}}{B_{0}}=c
$$

E and B fields perpendicular to one another, and to the direction of propagation (they are transverse):
Direction of propagation $=$ Direction of $\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}}$

Traveling E \& B Waves

Wavelength: λ Frequency : f $\overrightarrow{\mathbf{E}}=\hat{\mathbf{E}} E_{0} \sin (\overrightarrow{\mathbf{k}} \cdot \overrightarrow{\mathbf{r}}-\omega t)$
Wave Number: $k=\frac{2 \pi}{\lambda}$
Angular Freq.: $\omega=2 \pi f$
Period: $T=\frac{1}{f}=\frac{2 \pi}{\omega}$
Speed: $v=\frac{\omega}{k}=\lambda f$
Direction: $+\hat{\mathbf{k}}=\hat{\mathbf{E}} \times \hat{\mathbf{B}}$

$$
\frac{E}{B}=\frac{E_{0}}{B_{0}}=v
$$

In vacuum...

$$
=c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Energy \& the Poynting Vector

Energy in EM Waves

Energy densities: $u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}, u_{B}=\frac{1}{2 \mu_{0}} B^{2}$ Consider cylinder:

$$
d U=\left(u_{E}-u_{B}\right) A d z=\frac{1}{2}\left(\varepsilon_{0} E^{2}+\frac{B^{2}}{\mu_{0}}\right) A c d t
$$

What is rate of energy flow per unit area?

$$
\begin{aligned}
S & =\frac{1}{A} \frac{d U}{d t}=\frac{c}{2}\left(\varepsilon_{0} E^{2}+\frac{B^{2}}{\mu_{0}}\right)=\frac{c}{2}\left(\varepsilon_{0} c E B+\frac{E B}{c \mu_{0}}\right) \\
& =\frac{E B}{2 \mu_{0}}\left(\varepsilon_{0} \mu_{0} c^{2}+1\right)=\frac{E B}{\mu_{0}}
\end{aligned}
$$

Poynting Vector and Intensity

Direction of energy flow = direction of wave propagation

$$
\overrightarrow{\mathbf{S}}=\frac{\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}}}{\mu_{0}}: \text { Poynting vector }
$$

units: Joules per square meter per sec

Intensity I:

$$
I \equiv<S>=\frac{E_{0} B_{0}}{2 \mu_{0}}=\frac{E_{0}^{2}}{2 \mu_{0} c}=\frac{c B_{0}^{2}}{2 \mu_{0}}
$$

Momentum \& Radiation Pressure

EM waves transport energy: $\overrightarrow{\mathbf{S}}=\underline{\overrightarrow{\mathbf{E}} \times \overrightarrow{\mathbf{B}}}$

$$
\mu_{0}
$$

They also transport momentum:
 U

And exert a pressure: $P=\frac{F}{A}=\frac{1}{A} \frac{d p}{d t}=\frac{1}{c A} \frac{d U}{d t}=\frac{S}{C}$
This is only for hitting an absorbing surface. For hitting a perfectly reflecting surface the values are doubled:
Momentum transfer: $p=\frac{2 U}{c}$; Radiation pressure: $P=\frac{2 S}{c}$

Problem: Catchin' Rays

As you lie on a beach in the bright midday sun, approximately what force does the light exert on you?

The sun:
Total energy output of $\sim 4 \times 10^{26}$ Watts Distance from Earth $1 \mathrm{AU} \sim 150 \times 10^{6} \mathrm{~km}$ Speed of light $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

MIT OpenCourseWare
|http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

