Module 17:
 Magnetic Forces

Module 17: Outline

Magnetic Forces on Charges

Recall:

Cross Product

Notation Demonstration

$$
\begin{aligned}
& \odot \odot \odot \odot \\
& \odot \odot \odot \odot \\
& \odot \odot \odot \odot \\
& \odot \odot \odot \odot
\end{aligned}
$$

$\otimes \otimes \otimes \otimes$
$\otimes \otimes \otimes \otimes$
$\otimes \otimes \otimes \otimes$
$\otimes \otimes \otimes \otimes$

OUT of page "Arrow Head"

INTO page
"Arrow Tail"

Cross Product: Magnitude

Computing magnitude of cross product $A \times B$:

$$
\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} \quad|\overrightarrow{\mathbf{C}}|=|\overrightarrow{\mathbf{A}}||\overrightarrow{\mathbf{B}}| \sin \theta
$$

$|\overrightarrow{\mathbf{C}}|$: area of parallelogram

Cross Product: Direction

Right Hand Rule \#1:

$$
\overrightarrow{\mathbf{C}}=\overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}}
$$

For this method, keep your hand flat!

1) Put Thumb (of right hand) along A
2) Rotate hand so fingers point along B
3) Palm will point along \mathbf{C}

Cross Product: Signs

$$
\begin{array}{ll}
\hat{\mathbf{i}} \times \hat{\mathbf{j}}=\hat{\mathbf{k}} & \hat{\mathbf{j}} \times \hat{\mathbf{i}}=-\hat{\mathbf{k}} \\
\hat{\mathbf{j}} \times \hat{\mathbf{k}}=\hat{\mathbf{i}} & \hat{\mathbf{k}} \times \hat{\mathbf{j}}=-\hat{\mathbf{i}} \\
\hat{\mathbf{k}} \times \hat{\mathbf{i}}=\hat{\mathbf{j}} & \hat{\mathbf{i}} \times \hat{\mathbf{k}}=-\hat{\mathbf{j}}
\end{array}
$$

Cross Product is Cyclic (left column)
Reversing A \& B changes sign (right column)

Concept Question Questions: Right Hand Rule

Concept Question: Cross Product

What is the direction of $A \times B$ given the following two vectors?

1. up

2. down
3. left
4. right
5. into page
6. out of page
7. Cross product is zero (so no direction)

Concept Question: Cross Product

What is the direction of $A \times B$ given the following two vectors?

1. up
2. down
3. left
4. right
5. into page
6. out of page
7. Cross product is zero (so no direction)

Moving Charges Feel Magnetic Force

Magnetic force perpendicular both to: Velocity \mathbf{v} of charge and magnetic field \mathbf{B}

What Kind of Motion in Uniform B Field?

Problem: Cyclotron Motion

A charged particle with charge q is moving with speed v in a uniform magnetic field B pointing into the figure.

Find

(1) r : radius of the circle
(2) T : period of the motion
(3) ω : cyclotron frequency

Cyclotron Motion: Solution

(1) r : radius of the circle

$$
q v B=\frac{m v^{2}}{r}=r=\frac{m v}{q B}
$$

(2) T : period of the motion

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi m}{q B}
$$

(3) ω : cyclotron frequency

$$
a=2 \pi f=\frac{v}{r}=\frac{q B}{m}
$$

Putting it Together: Lorentz Force

Charges Feel...
$\overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}} \quad \overrightarrow{\mathbf{F}}_{B}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$
Electric Fields Magnetic Fields

$$
\overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})
$$

This is the final word on the force on a charge

Fields: Grav., Electric, Magnetic

 Mass m Charge $q(\pm)$Create: $\overrightarrow{\mathbf{g}}=-G \frac{m}{r^{2}} \hat{\mathbf{r}} \quad \overrightarrow{\mathbf{E}}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}}$
No

Feel: $\quad \overrightarrow{\mathbf{F}}_{g}=m \overrightarrow{\mathbf{g}} \quad \overrightarrow{\mathbf{F}}_{E}=q \overrightarrow{\mathbf{E}}$

Create:
Dipole p \quad Dipole μ

Feel:

$$
\vec{\tau}=\overrightarrow{\mathbf{p}} \times \overrightarrow{\mathbf{E}} \quad \vec{\tau}=\vec{\mu} \times \overrightarrow{\mathbf{B}}
$$

Application: Velocity Selector

What happens here?

Velocity Selector

Particle moves in a straight line when

$$
\overrightarrow{\mathbf{F}}_{n e t}-q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})-0=v-\frac{E}{B}
$$

Concept Question Question: Hall Effect

Concept Question: Hall Effect

 A conducting slab has current to the right. A B field is applied out of the page. Due to magnetic forces on the charge carriers, the bottom of the slab is at a higher electric potential than the top of the slab.

On the basis of this experiment, the sign of the charge carriers carrying the current in the slab is:

1. Positive
2. Negative
3. Cannot be determined
4. I don't know

MIT OpenCourseWare
|http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

