Module 27: Poynting Vector and Energy Flow

1

Module 27: Outline

Poynting Vector and Energy Flow Examples

Energy Flow

Poynting Vector

Power flow per unit area: $\vec{S} = \frac{\vec{E} \times \vec{B}}{\mu_0}$: Poynting vector

Problem: Resistor Power

Consider the above cylindrical resistor, with current *I* and voltage drop ΔV . Calculate the power in terms of the electric and magnetic fields at the surface of the resistor.

There is a geometric factor. What is it?

In Class Solution: Resistor Power

Energy Flow: Resistor

 $\vec{\mathbf{E}} \times \vec{\mathbf{B}}$

On surface of resistor is INWARD

Power & Energy in Circuit Elements

Don't Forget Displacement Current

Displacement Current

So we have to modify Ampere's Law: $\oint_{C} \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 (I_{encl} + I_d)$ Concept Question Questions: Poynting Vector

Concept Question: Capacitor

The figures above show a side and top view of a capacitor with charge *Q* and electric and magnetic fields E and B at time *t*. At this time the charge *Q* is:

- 1. Increasing in time
- 2. Constant in time.
- 3. Decreasing in time.
- 4. I don't know

Problem: Capacitor

A circular capacitor of spacing *d* and radius *R* is in a circuit carrying the steady current *i* shown.

At time t=0 it is uncharged

- 1. Find the electric field E(t) at P vs. time t (mag. & dir.)
- 2. Find the magnetic field **B**(t) at P
- 3. Find the Poynting vector **S**(t) at P
- 4. What is the total power flux into/out of the capacitor?
- 5. Does this make sense? How? (Hint: What's U?)

Another look at Inductance

Concept Question: Inductor

The figures above show a side and top view of a solenoid carrying current I with electric and magnetic fields E and B at time t. In the solenoid, the current I is:

- 1. Increasing in time
- 2. Constant in time.
- 3. Decreasing in time.
- 4. I don't know

Problem: Inductor

A solenoid of radius a and length hhas an increasing current I(t) as pictured. Consider a point P at radius r(r < a).

- 1. Find the magnetic field **B**(t) at P vs. time t
- 2. Find the electric field E(t) at P
- 3. Find the Poynting vector S(t) at P
- 4. What is the total power flux into/out of the inductor?
- 5. Does this make sense? How? (Hint: What's U?)

Energy Flow: Inductor

On surface of inductor with increasing current is INWARD

Energy Flow: Inductor

On surface of inductor with decreasing current is OUTWARD

Faraday & Inductors

$$LI = \Phi_{Self}$$

$$\mathcal{E} = -\frac{d\Phi_{B}}{dt} = -L\frac{dI}{dt}$$

8.02SC Physics II: Electricity and Magnetism Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.