Interference
 Challenge Problems

Problem 1:

Coherent light rays of wavelength λ are illuminated on a pair of slits separated by distance d at an angle θ_{1}, as shown in the figure below.

If an interference maximum is formed at an angle θ_{2} far from the slits, find the relationship between $\theta_{1}, \theta_{2}, d$ and λ.

Problem 2:

In the Young's double-slit experiment, suppose the separation between the two slits is $d=0.320 \mathrm{~mm}$. If a beam of $500-\mathrm{nm}$ light strikes the slits and produces an interference pattern. How many maxima will there be in the angular range $-30.0^{\circ}<\theta<30.0^{\circ}$?

Problem 3:

In the double-slit interference experiment shown in the figure, suppose $d=0.100 \mathrm{~mm}$ and $L=1.20 \mathrm{~m}$, and the incident light is monochromatic with a wavelength $\lambda=600 \mathrm{~nm}$.
(a) What is the phase difference between the two waves arriving at a point P on the screen when $\theta=0.800^{\circ}$?
(b) What is the phase difference between the two waves arriving at a point P on the screen when $y=4.00 \mathrm{~mm}$?

(c) If the phase difference between the two waves arriving at point P is $\phi=1 / 3 \mathrm{rad}$, what is the value of θ ?
(d) If the path difference is $\delta=\lambda / 4$, what is the value of θ ?
(e) In the double-slit interference experiment, suppose the slits are separated by $d=1.00 \mathrm{~cm}$ and the viewing screen is located at a distance $L=1.20 \mathrm{~m}$ from the slits. Let the incident light be monochromatic with a wavelength $\lambda=500 \mathrm{~nm}$. Calculate the spacing between the adjacent bright fringes on the viewing screen.
(f) What is the distance between the third-order fringe and the center line on the viewing screen?

Problem 4:

Let the intensity on the screen at a certain point in a double-slit interference pattern be 64.0% of the maximum value.
(a) What is the minimum phase difference (in radians) between sources that produces this result?
(b) Express this phase difference as a path difference for 486.1-nm light.

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

