Interference

Challenge Problem Solutions

Problem 1:

Coherent light rays of wavelength λ are illuminated on a pair of slits separated by distance d at an angle θ_{1}, as shown in the figure below.

If an interference maximum is formed at an angle θ_{2} far from the slits, find the relationship between $\theta_{1}, \theta_{2}, d$ and λ.

Problem 1 Solution:

The path difference between the two rays is

$$
\begin{equation*}
\delta=d \sin \theta_{1}-d \sin \theta_{2} \tag{0.1}
\end{equation*}
$$

For a constructive interference, $\delta=m \lambda$, where $m=0, \pm 1, \pm 2, \ldots$ is the order number. Thus, the condition is

$$
\begin{equation*}
d\left(\sin \theta_{1}-\sin \theta_{2}\right)=m \lambda \tag{0.2}
\end{equation*}
$$

Problem 2:

In the Young's double-slit experiment, suppose the separation between the two slits is $d=0.320 \mathrm{~mm}$. If a beam of $500-\mathrm{nm}$ light strikes the slits and produces an interference pattern. How many maxima will there be in the angular range $-30.0^{\circ}<\theta<30.0^{\circ}$?

Problem 2 Solution:

On the viewing screen, light intensity is a maximum when the two waves interfere constructively. This occurs when

$$
\begin{equation*}
d \sin \theta=m \lambda, \quad m=0, \pm 1, \pm 2, \ldots \tag{0.3}
\end{equation*}
$$

where λ is the wavelength of the light. At the angle $\theta=30.0^{\circ}, d=3.20 \times 10^{-4} \mathrm{~m}$ and $\lambda=500 \times 10^{-9} \mathrm{~m}$, we get

$$
\begin{equation*}
m=\frac{d \sin \theta}{\lambda}=320 \tag{0.4}
\end{equation*}
$$

Thus, there are 320 maxima in the range $0<\theta<30.0^{\circ}$. By symmetry, there are also 320 maxima in the range $-30.0^{\circ}<\theta<0$. Including the one for $m=0$ straight ahead, the total number of maxima is

$$
\begin{equation*}
N=320+320+1=641 \tag{0.5}
\end{equation*}
$$

Problem 3:

In the double-slit interference experiment shown in the figure, suppose $d=0.100 \mathrm{~mm}$ and $L=1.20 \mathrm{~m}$, and the incident light is monochromatic with a wavelength $\lambda=600 \mathrm{~nm}$.
(a) What is the phase difference between the two waves arriving at a point P on the screen when $\theta=0.800^{\circ}$?
(b) What is the phase difference between the two waves arriving at a point P on the screen when $y=4.00 \mathrm{~mm}$?

(c) If the phase difference between the two waves arriving at point P is $\phi=1 / 3 \mathrm{rad}$, what is the value of θ ?
(d) If the path difference is $\delta=\lambda / 4$, what is the value of θ ?
(e) In the double-slit interference experiment, suppose the slits are separated by $d=1.00 \mathrm{~cm}$ and the viewing screen is located at a distance $L=1.20 \mathrm{~m}$ from the slits. Let the incident light be monochromatic with a wavelength $\lambda=500 \mathrm{~nm}$. Calculate the spacing between the adjacent bright fringes on the viewing screen.
(f) What is the distance between the third-order fringe and the center line on the viewing screen?

Problem 3 Solutions:

(a)

$$
\begin{aligned}
\phi & =2 \pi \frac{\delta}{\lambda} \\
& =2 \pi \frac{d \sin \theta}{\lambda} \\
& =2(3.14) \frac{\left(1.00 \times 10^{-4} \mathrm{~m}\right) \sin 0.8^{\circ}}{6.00 \times 10^{-7} \mathrm{~m}} \\
& =14.6 \mathrm{rad}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\phi & =2 \pi \frac{d y}{\lambda L} \quad\left(\because \sin \theta \approx \frac{y}{L}\right) \\
& =2(3.14) \frac{\left(1.00 \times 10^{-4} \mathrm{~m}\right)\left(4.00 \times 10^{-3} \mathrm{~m}\right)}{\left(6.00 \times 10^{-7} \mathrm{~m}\right)(1.20 \mathrm{~m})} \\
& =3.49 \mathrm{rad}
\end{aligned}
$$

(c)

$$
\phi=\frac{1}{3} \mathrm{rad}=2 \pi \frac{d \sin \theta}{\lambda} \Rightarrow \theta=\sin ^{-1}\left(\frac{\lambda \phi}{2 \pi d}\right)=3.18 \times 10^{-4} \mathrm{rad}=0.0182^{\circ}
$$

(d)

$$
\delta=d \sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{\delta}{d}\right)=\sin ^{-1}\left(\frac{\lambda}{4 d}\right)=1.50 \times 10^{-3} \mathrm{rad}=0.0860^{\circ}
$$

(e)

Since $y_{b}=m \frac{\lambda L}{d}$, the spacing between adjacent bright fringes is

$$
\begin{aligned}
\Delta y_{b} & =y_{b}(m+1)-y_{b}(m) \\
& =(m+1) \frac{\lambda L}{d}-m \frac{\lambda L}{d} \\
& =\frac{\lambda L}{d} \\
& =\frac{\left(5.00 \times 10^{-7} \mathrm{~m}\right)(1.20 \mathrm{~m})}{\left(1.00 \times 10^{-2} \mathrm{~m}\right)} \\
& =6.00 \times 10^{-5} \mathrm{~m} \\
& =60.0 \mu \mathrm{~m}
\end{aligned}
$$

(f)

$$
\begin{aligned}
\Delta y_{b} & =y_{b}(3)-y_{b}(0) \\
& =(3) \frac{\lambda L}{d}-0 \\
& =3 \frac{\lambda L}{d} \\
& =3 \frac{\left(5.00 \times 10^{-7} \mathrm{~m}\right)(1.20 \mathrm{~m})}{\left(1.00 \times 10^{-2} \mathrm{~m}\right)} \\
& =1.80 \times 10^{-4} \mathrm{~m} \\
& =180 \mu \mathrm{~m}
\end{aligned}
$$

Problem 4:

Let the intensity on the screen at a certain point in a double-slit interference pattern be 64.0% of the maximum value.
(a) What is the minimum phase difference (in radians) between sources that produces this result?
(b) Express this phase difference as a path difference for 486.1-nm light.

Problem 4 Solutions:

(a) The average intensity is given by

$$
\begin{equation*}
I=I_{0} \cos ^{2}\left(\frac{\phi}{2}\right) \tag{0.6}
\end{equation*}
$$

where I_{0} is the maximum light intensity. Thus,

$$
\begin{equation*}
0.64=\cos ^{2}\left(\frac{\phi}{2}\right) \tag{0.7}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\phi=2 \cos ^{-1}\left(\frac{I}{I_{0}}\right)^{1 / 2}=2 \cos ^{-1}(0.64)^{1 / 2}=1.29 \mathrm{rad} \tag{0.8}
\end{equation*}
$$

(b) The phase difference ϕ is related to the path difference δ and the wavelength λ by

$$
\begin{equation*}
\delta=\frac{\lambda \phi}{2 \pi} \tag{0.9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\delta=\frac{(486 \mathrm{~nm})(1.29 \mathrm{rad})}{2 \pi}=99.8 \mathrm{~nm} \tag{0.10}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

