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Alternating-Current Circuits 

12.1 AC Sources 

In Chapter 10 we learned that changing magnetic flux can induce an emf according to 
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic 
field, the induced emf varies sinusoidally with time and leads to an alternating current 
(AC), and provides a source of AC power. The symbol for an AC voltage source is  

An example of an AC source is 

V t( )  = V0 sin  ωt (12.1.1) 

where the maximum valueV0 is called the amplitude. The voltage varies between V0 and 
−V0 since a sine function varies between +1 and −1. A graph of voltage as a function of 
time is shown in Figure 12.1.1.  

Figure 12.1.1 Sinusoidal voltage source 

The sine function is periodic in time.  This means that the value of the voltage at time t 
will be exactly the same at a later time t′ = +t T where T  is the period. The frequency, 
f , defined as f = 1/T , has the unit of inverse seconds (s−1), or hertz (Hz). The angular 

frequency is defined to be ω = 2π f . 

When a voltage source is connected to an RLC circuit, energy is provided to compensate 
the energy dissipation in the resistor, and the oscillation will no longer damp out. The 
oscillations of charge, current and potential difference are called driven or forced 
oscillations. 

After an initial “transient time,” an AC current will flow in the circuit as a response to the 
driving voltage source. The current, written as 
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I t( ) = I0 sin( t − ) (12.1.2)ω φ  

will oscillate with the same frequency as the voltage source, with an amplitude I0 and 
phase φ  that depends on the driving frequency. 

12.2 Simple AC circuits 

Before examining the driven RLC circuit, let’s first consider the simple cases where only 
one circuit element (a resistor, an inductor or a capacitor) is connected to a sinusoidal 
voltage source. 

12.2.1 Purely Resistive load 

Consider a purely resistive circuit with a resistor connected to an AC generator, as shown 
in Figure 12.2.1. (As we shall see, a purely resistive circuit corresponds to infinite 
capacitance C = ∞ and zero inductance L = 0 .) 

Figure 12.2.1 A purely resistive circuit 

Applying Kirchhoff’s loop rule yields 

V t( )  − R ( )  = V t − R ( )V t  ( )  I  t R  = 0 (12.2.1) 

where V t( ) = I  t R  is the instantaneous voltage drop across the resistor. The ( ) R R 

instantaneous current in the resistor is given by 

V t( )  V sinωtIR ( )t = R = R0 = IR0 sin  ωt (12.2.2)
R R 

where VR0 = V0 , and IR0 = VR0 R is the maximum current. Comparing Eq. (12.2.2) with 
Eq. (12.1.2), we find φ = 0 , which means that I t and V t  are in phase with eachR ( ) R ( )
other, meaning that they reach their maximum or minimum values at the same time. The 
time dependence of the current and the voltage across the resistor is depicted in Figure 
12.2.2(a). 
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Figure 12.2.2 (a) Time dependence of I ( ) t and V t( ) across the resistor. (b) Phasor R R

diagram for the resistive circuit.


The behavior of I ( ) t and V t( ) can also be represented with a phasor diagram, as shown 
R R

in Figure 12.2.2(b). A phasor is a rotating vector having the following properties: 

(i) length: the length corresponds to the amplitude. 

(ii) angular speed: the vector rotates counterclockwise with an angular speed ω. 

(iii) projection: the projection of the vector along the vertical axis corresponds to the 
value of the alternating quantity at time t. 

r 
We shall denote a phasor with an arrow above it. The phasor VR0 has a constant 
magnitude of VR0 . Its projection along the vertical direction is VR0 sinωt , which is equal 
to V t( ) , the voltage drop across the resistor at time t . A similar interpretation applies R
r 

to IR0 for the current passing through the resistor. From the phasor diagram, we readily 
see that both the current and the voltage are in phase with each other. 

The average value of current over one period can be obtained as: 

IR ( )t = 1 T
I t( )dt = 1 T

I sin  ωt dt = IR0 T
sin  2π t dt = 0 (12.2.3)

T ∫0 R T ∫0 R0 T ∫0 T 

This average vanishes because 

1 T
sinωt = 

T ∫0 
sin ωtd t = 0 (12.2.4) 

Similarly, one may find the following relations useful when averaging over one period: 
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1 T 
cos ωt = 

T ∫0 
cos ωt  dt  = 0 

sin  ωt cos  ωt = 1 
∫0 

T 
sin  ωt cos  ωt  dt  = 0

T 
1 T 1 T ⎛ 2π t ⎞ 1 (12.2.5) 

sin2 ωt = 
T ∫0 

sin 2 ωt  dt = 
T ∫0 

sin2 
⎜⎝ T ⎟⎠ 

 dt  = 
2 

cos 2 ωt = 1 
∫

T 
cos 2 ωt  dt = 1 

∫
T 

cos 2 ⎛
⎜ 

2π t ⎞
⎟ dt = 1 

T 0 T 0 ⎝ T ⎠ 2 

From the above, we see that the average of the square of the current is non-vanishing: 

T T T
IR 

2 ( )t = 1 
∫ IR 

2 ( )t dt = 1 
∫ IR 

2
0 sin  2 ωt  dt = IR 

2
0 

1 
∫ sin  2 ⎛

⎜ 
2π t ⎞

⎟ dt = 1 IR 
2

0 (12.2.6)
T 0 T 0 T 0 ⎝ T ⎠ 2 

It is convenient to define the root-mean-square (rms) current as 

IIrms = IR 
2 ( )t = R0 (12.2.7)

2 
In a similar manner, the rms voltage can be defined as 

Vrms = VR 
2 ( )t = VR0 (12.2.8)

2 

The rms voltage supplied to the domestic wall outlets in the United States is 
V = 120 V at a frequency f = 60 Hz .rms 

The power dissipated in the resistor is 

P t( )  = I ( )  R t = I 2 ( )R R t V  ( )  R t R  (12.2.9) 

from which the average over one period is obtained as: 

1 V 2 

P t( )  = IR 
2 ( )t R  = I 2 R = I 2 R = I V = rms (12.2.10)R 2 R0  rms  rms  rms  R 

12.2.2 Purely Inductive Load 

Consider now a purely inductive circuit with an inductor connected to an AC generator, 
as shown in Figure 12.2.3. 
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Figure 12.2.3 A purely inductive circuit 

As we shall see below, a purely inductive circuit corresponds to infinite capacitance 
C = ∞ and zero resistance R = 0 . Applying the modified Kirchhoff’s rule for inductors, 
the circuit equation reads  

V t( )  −VL ( )t = V t( )  − L dIL = 0 (12.2.11)
dt 

which implies  

dIL = V t( )  = VL0 sin ωt (12.2.12)
dt L L 

where VL0 = V0 . Integrating over the above equation, we find 

L ∫ L 
VL0 ∫ ⎛

⎜ 
VL0 ⎞

⎟ 
⎛
⎜ 

VL0 ⎞
⎟ 

⎛
⎜ 

π ⎞
⎟I t( )  = dI  = sinωt  dt  = −   cos  ωt = sin  ωt − (12.2.13)

L ⎝ ωL ⎠ ⎝ ωL ⎠ ⎝ 2 ⎠ 

where we have used the trigonometric identity 

−cos ωt = sin ⎛⎜ωt − π ⎞
⎟ (12.2.14)

⎝ 2 ⎠

for rewriting the last expression. Comparing Eq. (12.2.14) with Eq. (12.1.2), we see that 
the amplitude of the current through the inductor is  

IL0 = VL0 = VL0 (12.2.15)
ωL X L 

where 

X L =ωL (12.2.16) 

is called the inductive reactance. It has SI units of ohms (Ω), just like resistance. 
However, unlike resistance, X L depends linearly on the angular frequency ω. Thus, the 
resistance to current flow increases with frequency. This is due to the fact that at higher 
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frequencies the current changes more rapidly than it does at lower frequencies. On the 
other hand, the inductive reactance vanishes as ω approaches zero. 

By comparing Eq. (12.2.14) to Eq. (12.1.2), we also find the phase constant to be 

πφ = +  (12.2.17)
2 

The current and voltage plots and the corresponding phasor diagram are shown in the 
Figure 12.2.4 below. 

Figure 12.2.4 (a) Time dependence of I ( ) t and V t( ) across the inductor. (b) Phasor L L

diagram for the inductive circuit. 


As can be seen from the figures, the current I ( ) t is out of phase with V t( ) byφ = π / 2 ;
L L

it reaches its maximum value after V t( ) does by one quarter of a cycle. Thus, we say that  L

The current lags voltage by π / 2 in a purely inductive circuit 

12.2.3 Purely Capacitive Load 

In the purely capacitive case, both resistance R and inductance L are zero. The circuit 
diagram is shown in Figure 12.2.5. 

Figure 12.2.5 A purely capacitive circuit 

12-7 



Again, Kirchhoff’s voltage rule implies 

V t( )  −VC ( )t = V t( )  − Q t( )  = 0 (12.2.18)
C 

which yields 

Q t( )  = CV  t  ( )  = CV  C ( )t = CV  C 0 sin  ωt (12.2.19) 

where VC0 = V0 . On the other hand, the current is 

C ( )  = + dQ =ω C 0 cos  ωt =ω C 0 sin  ⎛ωt + π 
⎟
⎞I t  CV  CV  ⎜ (12.2.20)

dt ⎝ 2 ⎠

where we have used the trigonometric identity 

cosωt = sin ⎛⎜ωt + π ⎞
⎟ (12.2.21)

⎝ 2 ⎠

The above equation indicates that the maximum value of the current is 

IC 0 =ωCV  C 0 =
VC 0 (12.2.22)
XC 

where 

1XC =  (12.2.23)
ωC 

is called the capacitance reactance. It also has SI units of ohms and represents the 
effective resistance for a purely capacitive circuit. Note that XC is inversely proportional 
to both C and ω , and diverges as ω approaches zero. 

By comparing Eq. (12.2.21) to Eq. (12.1.2), the phase constant is given by 

πφ = −  (12.2.24)
2 

The current and voltage plots and the corresponding phasor diagram are shown in the 
Figure 12.2.6 below. 
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Figure 12.2.6 (a) Time dependence of IC ( ) C ( )t and V t  across the capacitor. (b) Phasor 
diagram for the capacitive circuit. 

Notice that at t = 0 , the voltage across the capacitor is zero while the current in the circuit 
is at a maximum. In fact, IC ( ) reaches its maximum before C ( ) by one quarter of at V t  
cycle (φ = π / 2  ). Thus, we say that 

The current leads the voltage by π/2 in a capacitive circuit 

12.3 The RLC Series Circuit 

Consider now the driven series RLC circuit shown in Figure 12.3.1. 

Figure 12.3.1 Driven series RLC Circuit 

Applying Kirchhoff’s loop rule, we obtain  

V t( )  −VR ( )t −VL ( )t −VC ( )t = V t( )  − IR  − L dI − Q = 0 (12.3.1)
dt C 

which leads to the following differential equation: 
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L dI + IR  + Q = V sinωt (12.3.2)
dt C 0 

Assuming that the capacitor is initially uncharged so that I /= +dQ dt is proportional to 
the increase of charge in the capacitor, the above equation can be rewritten as 

2 

L d Q  + R dQ  + Q = V0 sinωt (12.3.3)
dt 2 dt C 

One possible solution to Eq. (12.3.3) is 

Q t( )  = Q0 cos(  t − ) (12.3.4)ω φ  

where the amplitude and the phase are, respectively, 

/ VV LQ0 = 0 = 0 

(Rω / L)2 + (ω 2 −1/  LC  )2 ω R2 + (ωL −1/  ωC)2 

(12.3.5)
V = 0 

2 2( )L CR X Xω + −

and 

tan φ = 
R 
1 ⎛

⎜⎝
ωL −

ω 
1 
C 

⎞
⎟⎠

= X L − 
R

XC (12.3.6) 

The corresponding current is 

t − )I t( )  = + dQ = I sin(  ω φ  (12.3.7)
dt 0 

with an amplitude 

I0 = −Q0ω = −  V0 (12.3.8)
R2 + (X L − XC )

2 

Notice that the current has the same amplitude and phase at all points in the series RLC 
circuit. On the other hand, the instantaneous voltage across each of the three circuit 
elements R, L and C has a different amplitude and phase relationship with the current, as 
can be seen from the phasor diagrams shown in Figure 12.3.2.    
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Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a) 
the resistor, (b) the inductor, and (c) the capacitor, of a series RLC circuit. 

From Figure 12.3.2, the instantaneous voltages can be obtained as: 

V t  I R  ( )  = sin  ωt V  sin  ωt= R 0 R0 

L ( )  = 0 L sin  ⎜
⎛ωt + π 

⎟
⎞ =VL0 cos  ωtV t  I X  (12.3.9)

⎝ 2 ⎠ 

( )  = sin  ⎛ωt − π ⎞ = −  cos  ωtV t I X  VC 0 C ⎜ ⎟ C 0⎝ 2 ⎠

where 

V = I R  , V = I X  , V = I X  (12.3.10)R0 0 L0 0 L C 0 0 C 

are the amplitudes of the voltages across the circuit elements. The sum of all three 
voltages is equal to the instantaneous voltage supplied by the AC source: 

( )  = R ( )  + L ( )  + C ( )  (12.3.11)V t  V t V t V t

Using the phasor representation, the above expression can also be written as 

r r r r
= +VV V  +V (12.3.12)0 R0 L0 C0 

r 
as shown in Figure 12.3.3 (a). Again we see that current phasor I0 leads the capacitive 

r r
voltage phasor VC 0 by π / 2  but lags the inductive voltage phasor VL0 by π / 2  . The three 
voltage phasors rotate counterclockwise as time passes, with their relative positions fixed. 
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Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship 

The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b). 
From the Figure, we see that 

r r r r
| | |  V +V +V |= V + V −V )V0 = V0 = R0 L0 C 0 R 

2
0 ( L0 C 0

2 

2 2 
0 0 0( ) ( )L CI  R  I X  I X= + − (12.3.13) 

= I R2 + (X − X )2 
0 L C 

which leads to the same expression for I0 as that obtained in Eq. (12.3.7).  

It is crucial to note that the maximum amplitude of the AC voltage source V0  is not equal 
to the sum of the maximum voltage amplitudes across the three circuit elements:  

V V  +V (12.3.14)≠ +V0 R0 L0 C 0 

This is due to the fact that the voltages are not in phase with one another, and they reach 
their maxima at different times.  

12.3.1 Impedance 

We have already seen that the inductive reactance X L =ωL and capacitance reactance 
XC =1/ωC play the role of an effective resistance in the purely inductive and capacitive 
circuits, respectively. In the series RLC circuit, the effective resistance is the impedance, 
defined as 

Z = R2 + (X L − XC )
2 (12.3.15) 

The relationship between Z, XL and XC can be represented by the diagram shown in 
Figure 12.3.4: 
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Figure 12.3.4 Diagrammatic representation of the relationship between Z, X L and XC . 

The impedance also has SI units of ohms. In terms of Z, the current may be rewritten as  

I t( )  = V0 sin(  ω φt − ) (12.3.16)
Z 

Notice that the impedance Z also depends on the angular frequency ω, as do XL and XC. 

Using Eq. (12.3.6) for the phase φ and Eq. (12.3.15) for Z , we may readily recover the 
limits for simple circuit (with only one element). A summary is provided in Table 12.1 
below: 

Simple 
Circuit R L C X L Lω= 1X C Cω 

= tan 1 L CX X 
R

φ − −⎛ ⎞ = ⎜ ⎟⎝ ⎠ 
2 2( )L CZ R X X= + − 

purely 
resistive R 0 ∞ 0 0 0 R 
purely 
inductive 0 L ∞ LX 0 / 2π LX 
purely 
capacitive 0 0 C 0 CX / 2π− CX 

Table 12.1 Simple-circuit limits of the series RLC circuit 

12.3.2 Resonance 

Eq. (12.3.15) indicates that the amplitude of the current I0 = V Z  reaches a maximum 0 / 
when Z is at a minimum. This occurs when X L = XC , or ωL =1/ωC , leading to 

ω0 =
1 (12.3.17)
LC 

The phenomenon at which I0 reaches a maximum is called a resonance, and the 
frequency ω0 is called the resonant frequency. At resonance, the impedance 
becomes Z = R , the amplitude of the current is 
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I0 =
V0 (12.3.18)
R 

and the phase is 
φ = 0 (12.3.19) 

as can be seen from Eq. (12.3.5). The qualitative behavior is illustrated in Figure 12.3.5. 

Figure 12.3.5 The amplitude of the current as a function of ω in the driven RLC circuit. 

12.4 Power in an AC circuit 

In the series RLC circuit, the instantaneous power delivered by the AC generator is given 
by 

( )P t  = 

= ( ) 

2 
0 0 

0 

2 
20 

( )  ( )  sin(  )  sin  

sin cos sin cos sin 

V VI  t  V  t  t  V  t
Z Z 

V t t t
Z 

ω φ  ω  

ω  φ  ω  ω  φ  

=  − ⋅  =  

−

sin(  )sin  t tω φ  ω  − 
(12.4.1) 

where we have used the trigonometric identity 

sin( ) sin cost tω φ  ω  φ−  =  cos sintω  φ  −  (12.4.2) 

The time average of the power is 
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1 T V0
2

2 1 T V0
2 

P t( ) ∫0 ∫0 
ω φ  sin dt  = sin ωt cosφ dt  − sinωt cos t

T Z T Z 
V0

2 2 

= cos φ sin 2 ωt − V0 sinφ sin ωt cos ωt (12.4.3)
Z Z


1 V0
2


= cos φ 
2 Z 

where Eqs. (12.2.5) and (12.2.7) have been used.  In terms of the rms quantities, the 
average power can be rewritten as 

= 1 V0
2 

cosφ = Vrms  
2 

cos φ = Irms Vrms cosφ (12.4.4)
2 Z Z

P t( ) 

The quantity cosφ  is called the power factor. From Figure 12.3.4, one can readily show 
that 

cos φ = R (12.4.5)
Z 

Thus, we may rewrite P t( )  as 

⎛ ⎞P t( )  = I V R = I ⎛Vrms ⎞ R = I 2 R (12.4.6)rms rms ⎜ ⎟  rms ⎜ ⎟ rms Z Z⎝ ⎠  ⎝ ⎠

In Figure 12.4.1, we plot the average power as a function of the driving angular 
frequency ω. 

Figure 12.4.1 Average power as a function of frequency in a driven series RLC circuit. 

We see that P t( ) attains the maximum when cosφ =1 , or Z = R , which is the 
resonance condition. At resonance, we have 
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V 2 
rms P = I V =  (12.4.7)

max rms rms R 

12.4.1 Width of the Peak 

The peak has a line width. One way to characterize the width is to define Δω = ω+ −ω− , 
where ω± are the values of the driving angular frequency such that the power is equal to 
half its maximum power at resonance. This is called full width at half maximum, as 
illustrated in Figure 12.4.2. The width Δω  increases with resistance R. 

Figure 12.4.2 Width of the peak 

To find Δω , it is instructive to first rewrite the average power P t( )  as 

2 2 21 V R  1 V RωP t( )  = 
2 R2 + (ωL 

0 

−1/  ωC)2 = 
2 ω2 R2 + L 

0 
2 (ω 2 −ω0

2 )2 (12.4.8) 

P t( )  = V0
2 / 2  R . The condition for finding ω±  iswith 

max 

V0
2 1 V0

2 Rω21 
ω± 

(12.4.9)P t( )  = P t( )  ⇒ = = 
max 2 ω± 4R 2 ω2 R2 + L2 (ω 2 −ω0

2 )2 

which gives 

(ω 2 −ω0
2 )2 = ⎜

⎛ Rω 
⎟
⎞

2 

(12.4.10)
⎝ L ⎠

Taking square roots yields two solutions, which we analyze separately. 

case 1: Taking the positive root leads to 
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ω+ 
2 −ω0

2 = + Rω+ (12.4.11)
L 

Solving the quadratic equation, the solution with positive root is 

R ⎛ R ⎞
2

2ω+ = + ⎜ ⎟ +ω0 (12.4.12)
2L ⎝ 4L ⎠

Case 2: Taking the negative root of Eq. (12.4.10) gives 

ω− 
2 −ω0

2 = − Rω− (12.4.13)
L 

The solution to this quadratic equation with positive root is 

R ⎛ R ⎞
2

2ω− = −  + ⎜ ⎟ +ω0 (12.4.14)
2L ⎝ 4L ⎠

The width at half maximum is then 

RΔω = ω+ −ω− =  (12.4.15)
L 

Once the width Δωis known, the quality factor Q  (not to be confused with charge) can be 
obtained as 

Q = 0ω 
ωΔ

0 L 
R 

ω = (12.4.16) 

Comparing the above equation with Eq. (11.8.17), we see that both expressions agree 
with each other in the limit where the resistance is small, and 2 2 

0 0( /  2  )R Lω ω ω′ = − ≈ . 

12.5 Transformer 

A transformer is a device used to increase or decrease the AC voltage in a circuit. A 
typical device consists of two coils of wire, a primary and a secondary, wound around an 
iron core, as illustrated in Figure 12.5.1. The primary coil, with N1 turns, is connected to 
alternating voltage source V t( ) . The secondary coil has N2 turns and is connected to a 1 

“load resistance” R2 . The way transformers operate is based on the principle that an 
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alternating current in the primary coil will induce an alternating emf on the secondary 
coil due to their mutual inductance. 

Figure 12.5.1 A transformer 

In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of 
induction implies 

V1 = −N1 
dΦB (12.5.1)

dt 

where ΦB is the magnetic flux through one turn of the primary coil. The iron core, which 
extends from the primary to the secondary coils, serves to increase the magnetic field 
produced by the current in the primary coil and ensure that nearly all the magnetic flux 
through the primary coil also passes through each turn of the secondary coil. Thus, the 
voltage (or induced emf) across the secondary coil is 

V2 = −N2 
dΦB (12.5.2)

dt 

In the case of an ideal transformer, power loss due to Joule heating can be ignored, so 
that the power supplied by the primary coil is completely transferred to the secondary coil: 

I V = I V  (12.5.3)1 1  2 2  

In addition, no magnetic flux leaks out from the iron core, and the flux ΦB  through each 
turn is the same in both the primary and the secondary coils. Combining the two 
expressions, we are lead to the transformer equation: 

V2 = N2 (12.5.4)
V1 N1 

By combining the two equations above, the transformation of currents in the two coils 
may be obtained as: 
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I1 = 
⎛
⎜ 

V2 ⎞
⎟ I2 = 

⎛
⎜ 

N2 ⎞
⎟ I2 (12.5.5)

⎝ V1 ⎠ ⎝ N1 ⎠

Thus, we see that the ratio of the output voltage to the input voltage is determined by the 
turn ratio 2 / 1 N2 > N1 , then 2 > 1N N  . If V V , which means that the output voltage in the 
second coil is greater than the input voltage in the primary coil. A transformer with 
N2 > N1 is called a step-up transformer. On the other hand, if N2 < N1 , then 2 < 1V V , and 
the output voltage is smaller than the input. A transformer with N2 < N1 is called a step-
down transformer. 

12.6 Parallel RLC Circuit 

Consider the parallel RLC circuit illustrated in Figure 12.6.1. The AC voltage source is 
V t( )  = V0 sin  ωt . 

Figure 12.6.1 Parallel RLC circuit. 

Unlike the series RLC circuit, the instantaneous voltages across all three circuit elements 
R, L, and C are the same, and each voltage is in phase with the current through the 
resistor. However, the currents through each element will be different. 

In analyzing this circuit, we make use of the results discussed in Sections 12.2 – 12.4. 
The current in the resistor is  

IR ( )t = V t( )  = V0 sin  ωt = IR0 sin  ωt (12.6.1)
R R 

where IR0 = 0 /V R  . The voltage across the inductor is  

V t( )  = V t  ( )  = V sin  ωt = L dIL (12.6.2)L 0 dt 
which gives 

t V V V ⎛ π ⎞ ⎛ π ⎞I t( ) = ∫0 L 
0 sinωt  dt  ' ' = −  

ω 
0 

L 
cos ωt = 

X 
0 

L 

sin 
⎝

ωt − 
2 ⎠

= I sin 
⎝

ωt − 
2 ⎠ 

(12.6.3)L ⎜ ⎟ L0 ⎜ ⎟ 

12-19 



where IL0 = 0 / L and X L = ωLV X   is the inductive reactance.  

Similarly, the voltage across the capacitor is C ( )  = V0 sin  ωt = (  ) /  V t  Q t C  , which implies 

I t( )  = dQ = ωCV  cos  ωt = V0 sin  ⎛ ωt + π ⎞ = I sin  ⎛ ωt + π ⎞ (12.6.4)C dt 0 XC ⎝⎜ 2 ⎠⎟ C 0 ⎝⎜ 2 ⎠⎟ 

where IC0 = 0 / C and XC =V X  1/ ωC  is the capacitive reactance. 

Using Kirchhoff’s junction rule, the total current in the circuit is simply the sum of all 
three currents. 

I t( )  = I t  ( )  + I t  ( )  + I t  ( )R L C 

IR0 sin ωt  I  L0 sin ⎛⎜ ωt − π ⎞
⎟ + IC0 sin ⎛⎜ ωt + π ⎞

⎟ 
(12.6.5)

= + 
⎝ 2 ⎠ ⎝ 2 ⎠

The currents can be represented with the phasor diagram shown in Figure 12.6.2. 

Figure 12.6.2 Phasor diagram for the parallel RLC circuit 

From the phasor diagram, we see that 

r r r r
I0 = IR0 + IL0 + IC0 (12.6.6) 

and the maximum amplitude of the total current, I0 , can be obtained as 

r r r r
| | |  = I + I + I |= I + (I − I )I0 = I0 R0 L0 C 0 R 

2
0 C0 L0

2 

1 ⎛ 1 ⎞
2 1 ⎛ 1 1 ⎞

2 (12.6.7) 
= V0 2 + ⎜ ωC − ⎟ = V0 2 + ⎜ − ⎟R ⎝ ωL ⎠ R ⎝ XC X L ⎠ 
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Note however, since IR ( ) t , IL ( ) t and IC ( ) t are not in phase with one another, I0  is not 
equal to the sum of the maximum amplitudes of the three currents: 

I0 ≠ IR0 + IL0 + IC0 (12.6.8) 

With I0 = 0 /V Z  , the (inverse) impedance of the circuit is given by  

1 1 ⎛ 1 ⎞
2 1 ⎛ 1 1 ⎞

2 

= 2 + ⎜ ωC − ⎟ = 2 + ⎜ − ⎟ (12.6.9)
Z R ⎝ ωL ⎠ R ⎝ XC X L ⎠

The relationship between Z , R , X L and XC is shown in Figure 12.6.3. 

Figure 12.6.3 Relationship between Z , R , X L and XC in a parallel RLC circuit. 

From the figure or the phasor diagram shown in Figure 12.6.2, we see that the phase can 
be obtained as 

V0 − V0 

tan φ =
⎛
⎜ 

IC0 − IL0 ⎞⎟ = XC X L = R 
⎛
⎜ 

1 − 1 ⎞
⎟ = R ⎛⎜ωC − 1 

⎟
⎞ (12.6.10)

⎝ IR0 ⎠ V0 ⎝ XC X L ⎠ ⎝ ωL ⎠ 
R 

The resonance condition for the parallel RLC circuit is given by φ = 0 , which implies 

1 1 =  (12.6.11)
XC X L 

The resonant frequency is 

ω0 =
1 (12.6.12)
LC 

which is the same as for the series RLC circuit. From Eq. (12.6.9), we readily see that 
1/ Z is minimum (or Z is maximum) at resonance. The current in the inductor exactly 
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cancels out the current in the capacitor, so that the total current in the circuit reaches a 
minimum, and is equal to the current in the resistor: 

I0 =
V0	 (12.6.13)
R 

As in the series RLC circuit, power is dissipated only through the resistor. The average 
power is 

V0
2 2 2 ZV0 V0 ⎛ ⎞  P t( )  ( )  ( )I  t V t  2 ( )I  t R  sin  2 ωt = = ⎜ ⎟ (12.6.14)= = = R R R 2R 2Z R⎝ ⎠

Thus, the power factor in this case is  

P t( )  Z 1power factor = 2 = = 	 = cos φ (12.6.15)
V0 / 2Z R ⎛ R ⎞

2 

1+ ⎜ R C  ⎟ω − 
⎝ ωL ⎠

12.7 Summary 

•	 In an AC circuit with a sinusoidal voltage source V t( )  = V0 sin  ωt , the current is 
given by ( )  = I0 sin(  t − ) , where I0 is the amplitude and φI t  ω φ  is the phase 
constant. For simple circuit with only one element (a resistor, a capacitor or an 
inductor) connected to the voltage source, the results are as follows: 

Circuit Elements Resistance 
/Reactance 

Current 
Amplitude  Phase angle φ 

R 0 
R0 

VI 
R 

= 0 

LX Lω= 0 
L0 

L 

VI 
X 

= / 2π 
current lags voltage by 90° 

1 
CX 

Cω 
= 0 

C0 
C 

VI 
X 

= / 2π− 
current leads voltage by 90° 

where X L  is the inductive reactance and XC is the capacitive reactance. 

•	 For circuits which have more than one circuit element connected in series, the 
results are 
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Circuit Elements Impedance Z Current Amplitude Phase angle φ 

2 2 
LR X+ 

0 
0 2 2 

L 

VI 
R X 

= 
+ 

0 
2 
πφ< <  

2 2 
CR X+ 

0 
0 2 2 

C 

VI 
R X 

= 
+ 0 

2 
π φ− < <  

2 2( )L CR X X+ − 
0 

0 2 2( )L C 

VI 
R X X 

= 
+ − 

0 if 
0 if 

L C 

L C 

X X 
X X 

φ 
φ 

> > 
< < 

where Z is the impedance Z of the circuit. For a series RLC circuit, we have 

Z = R2 + (X L − XC )
2 

The phase angle between the voltage and the current in an AC circuit is  

φ = tan −1 
⎜
⎛ X L − XC 

⎟
⎞ 

⎝ R ⎠ 

• In the parallel RLC circuit, the impedance is given by 

1 1 ⎛ 1 ⎞
2 1 ⎛ 1 1 ⎞

2 

= 2 + ⎜ ωC − ⎟ = 2 + ⎜ − ⎟Z R ⎝ ωL ⎠ R ⎝ XC X L ⎠ 

and the phase is 


φ = tan −1 ⎡⎢R 
⎛
⎜ 

1 − 1 ⎞
⎟
⎤
⎥ = tan −1 ⎡

⎢R ⎛⎜ωC − 1 ⎞
⎟
⎤
⎥


⎣ ⎝ XC X L ⎠⎦ ⎣ ⎝ ωL ⎠⎦ 

•	 The rms (root mean square) voltage and current in an AC circuit are given by 

V = V0 , Irms = I0 
rms 2 2 

• The average power of an AC circuit is 

P t( )  = I V cos  φrms rms 

where cosφ is known as the power factor. 

• The resonant frequency ω0 is 
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ω0 = 1 
LC 

At resonance, the current in the series RLC circuit reaches the maximum, but the 
current in the parallel RLC circuit is at a minimum. 

• The transformer equation is 

V2 = N2


V1 N1


where V1 is the voltage source in the primary coil with N1  turns, and V2  is the 
output voltage in the secondary coil with N2 turns. A transformer with N2 > N1 is 
called a step-up transformer, and a transformer with N2 < N1  is called a step-down 
transformer. 

12.8 Problem-Solving Tips 

In this chapter, we have seen how phasors provide a powerful tool for analyzing the AC 
circuits.  Below are some important tips: 

1. Keep in mind the phase relationships for simple circuits 

(1) For a resistor, the voltage and the phase are always in phase. 
(2) For an inductor, the current lags the voltage by90° . 
(3) For a capacitor, the current leads to voltage by 90° . 

2. When circuit elements are connected in series, the instantaneous current is the same for 
all elements, and the instantaneous voltages across the elements are out of phase. On 
the other hand, when circuit elements are connected in parallel, the instantaneous 
voltage is the same for all elements, and the instantaneous currents across the elements 
are out of phase.  

3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the 
voltage drop across all the circuit elements involved should be represented with 
phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit is shown for both 
the inductive case X L > XC  and the capacitive case X L < XC . 

12-24 



Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) X L > XC and (b) 
X L < XC . 

r
r

From Figure 12.8.1(a), we see that VL0 > VC 0 in the inductive case and V0  leads I0  by a 
phaseφ . On the other hand, in the capacitive case shown in Figure 12.8.1(b), VC 0 > VL0 

r
r

and I0 leadsV0  by a phaseφ . 

4. When VL0 = VC 0 , or φ = 0 , the circuit is at resonance. The corresponding resonant 

frequency isω0 = 1/ LC , and the power delivered to the resistor is a maximum. 

5. 	For parallel connection, draw a phasor diagram for the currents. The amplitudes of the 
currents across all the circuit elements involved should be represented with phasors. In 
Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the 
inductive case X L > XC and the capacitive case X L < XC . 

Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) X L > XC and (b) 
X L < XC . 

r
r

From Figure 12.8.2(a), we see that IL0 > IC 0 in the inductive case and V0  leads I0  by a 
phaseφ . On the other hand, in the capacitive case shown in Figure 12.8.2(b), IC 0 > IL0 

r
r

and I0 leadsV0  by a phaseφ . 
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12.9 Solved Problems 

12.9.1 RLC Series Circuit 

A series RLC circuit with L =160 mH , C = 100 μF , and R = 40.0Ω is connected to a 
sinusoidal voltage V t( ) = (40.0 V sin ωt , with ω = 200 rad/s ) . 

(a) What is the impedance of the circuit? 

(b) Let the current at any instant in the circuit be ( )  I0 sin (ω φ−I t  = t ) . Find I0. 

(c)  What is the phaseφ ? 

Solution: 

(a) The impedance of a series RLC circuit is given by 

Z = R2 + (X − XC )
2 (12.9.1)L 

where 
X L = ωL (12.9.2) 

and 
1XC =  (12.9.3)

ωC 

are the inductive reactance and the capacitive reactance, respectively. Since the general 
expression of the voltage source is V t( )  = V0 sin(  ωt) , where V0 is the maximum output 
voltage and ω is the angular frequency, we have V0 = 40 V and ω = 200 rad/s . Thus, the 
impedance Z becomes 

2
⎛ 1 ⎞Z = (40.0 Ω)2 + ⎜
⎝

(200 rad/s)(0.160 H) − 
(200 rad/s)(100 ×10−6  F) ⎟⎠ (12.9.4) 

= 43.9Ω

(b) With V0 = 40.0 V , the amplitude of the current is given by  

I0 = V0 = 40.0V = 0.911A (12.9.5)
Z 43.9Ω

(c) The phase between the current and the voltage is determined by 
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φ = tan−1 ⎛
⎜ 

X L − XC ⎞
⎟ = tan−1 

⎛
⎜
⎜

ωL −
ω 
1 
C 

⎞
⎟
⎟


⎝ R ⎠ ⎜ R ⎟

⎝ ⎠


⎛ 1 ⎞ (12.9.6) 
⎜ (200 rad/s)(0.160 H)−

(200 rad/s)(100×10−6  F) ⎟

= tan−1 ⎜ ⎟ = −24.2°
⎜ 40.0 Ω ⎟ 

⎜ ⎟⎜ ⎟⎝ ⎠

12.9.2 RLC Series Circuit 

Suppose an AC generator with V t  = 150 V sin 100t ) is connected to a series RLC( ) (  ) (
circuit with R = 40.0 Ω , L = 80.0 mH , and C = 50.0 μF , as shown in Figure 12.9.1. 

Figure 12.9.1 RLC series circuit 

(a) Calculate VR0 , VL0 and VC 0 , the maximum of the voltage drops across each circuit 
element. 

(b) Calculate the maximum potential difference across the inductor and the capacitor 
between points b and d shown in Figure 12.9.1. 

Solutions: 

(a) The inductive reactance, capacitive reactance and the impedance of the circuit are 
given by 

1 1XC =
ωC 

=
(100 rad/s)(50.0×10  F) = 200 Ω (12.9.7)

−6 

−3X = ωL = (100 rad/s)(80.0×10  H) = 8.00 Ω  (12.9.8)L 

and 
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Z = R2 + X − X 2 = 40.0 Ω 2 + 8.00 Ω −  200 Ω 2 =196 Ω  (12.9.9)( L C ) ( ) (  )  

respectively. Therefore, the corresponding maximum current amplitude is  

I0 = V0 = 150 V = 0.765A (12.9.10)
Z 196 Ω

The maximum voltage across the resistance would be just the product of maximum 
current and the resistance: 

V = I R  = 0.765 A 40.0 Ω = 30.6 V (12.9.11) 

Similarly, the maximum voltage across the inductor is 

= I X  = (0.765 A )(  8.00 Ω = 6.12 V (12.9.12) 

R0 0 (  )(  )  

VL0 0 L ) 

and the maximum voltage across the capacitor is 

V = I X  = 0.765 A 200 Ω = 153 V (12.9.13)C 0 0 C (  )(  )  

Note that the maximum input voltage V0 is related to VR0 , VL0 and VC0 by 

V0 = VR0
2 + (VL0 −VC 0 )2 (12.9.14) 

(b) From b to d, the maximum voltage would be the difference between VL0 and VC 0 : 

r r
|Vbd | | VL0 +VC 0 = VL0 −VC 0 | | 6.12 V −153 V| =147 V = | | = (12.9.15) 

12.9.3  Resonance 

A sinusoidal voltage ( )  (  200 V sin ωt is applied to a series RLC circuit with V t  = )
L =10.0 mH , C =100 nF and R = 20.0 Ω . Find the following quantities: 

(a) the resonant frequency, 

(b) the amplitude of the current at resonance, 

(c) the quality factor Q  of the circuit, and 
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(d) the amplitude of the voltage across the inductor at the resonant frequency. 

Solution: 

(a) The resonant frequency for the circuit is given by 

ω0 1 1 = 1 1 = 5033Hz (12.9.16)f = = 
−3 −92π 2π LC 2π (10.0×10  H)(  100×10  F) 

(b) At resonance, the current is 

I0 = V0 = 200 V = 10.0 A (12.9.17)
R 20.0 Ω

(c) The quality factor Q of the circuit is given by 

−1 −32π (5033 s )(  10.0×10  H)
Q = ω 

R 
0 L =

(20.0 Ω) 
= 15.8 (12.9.18) 

(d) At resonance, the amplitude of the voltage across the inductor is 

−1 −3 3V = I X  = I ω L = 10.0 A 2 π 5033 s 10.0×10  H = 3.16 10 V L0 0 L 0 0 ( ) (  )(  ) ×  (12.9.19) 

12.9.4 RL High-Pass Filter 

An RL high-pass filter (circuit that filters out low-frequency AC currents) can be 
represented by the circuit in Figure 12.9.2, where R is the internal resistance of the 
inductor. 

Figure 12.9.2 RL filter 

(a) Find 20 / 10 , the ratio of the maximum output voltage V20 to the maximum input V V  
voltage V10 . 
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(b) Suppose r =15.0 Ω , R =10 Ω and L = 250 mH . Find the frequency at which 
V V/ =1/ 2  .20 10 

Solution: 

(a) The impedance for the input circuit is Z1 = ( + )2 + X L 
2 

LR r  where X = ωL and 
2 2+  for the output circuit. The maximum current is given by Z2 = R  X  L 

I0 = V10 = V0
2 2 

(12.9.20)
Z1 (R + r) + X L 

Similarly, the maximum output voltage is related to the output impedance by  

Z  I R X  (12.9.21)V20 = I0 2 = 0
2 + L 

2 

This implies 
2 2V20 = 

R  X  L+ 
V10 (R + r)2 + X L 

2 
(12.9.22) 

(b) For 20 / 10 =V V  1/ 2  , we have 
2 2 2 2R X  R+ L = 1 ⇒ X = (R + r) − 4 (12.9.23)

(R r)2 + X L 
2 4 L 3+ 

Since X L = ωL = 2π fL , the frequency which yields this ratio is 

X 1 ( Ω +15.0 Ω)2 − 4 10.0 Ω)2 

f = L = 
2π L 2π (0.250 H ) 

10.0
3 

( = 5.51Hz (12.9.24) 

12.9.5 RLC Circuit 

Consider the circuit shown in Figure 12.9.3. The sinusoidal voltage source is 
V t  V  ( )  = 0 sin  ωt . If both switches S1  and S2 are closed initially, find the following 
quantities, ignoring the transient effect and assuming that R , L ,V0  and ω are known: 
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Figure 12.9.3 

(a) the current I ( )t as a function of time, 

(b) the average power delivered to the circuit, 

(c) the current as a function of time a long time after only S1  is opened. 

(d) the capacitance C if both S1  and S2 are opened for a long time, with the current and 
voltage in phase. 

(e) the impedance of the circuit when both S1  and S2 are opened. 

(f) the maximum energy stored in the capacitor during oscillations. 

(g) the maximum energy stored in the inductor during oscillations. 

(h) the phase difference between the current and the voltage if the frequency of V t( )  is 
doubled. 

(i) the frequency at which the inductive reactance X L is equal to half the capacitive 
reactance XC . 

Solutions: 

(a) When both switches S1 and S2 are closed, the current goes through only the generator 
and the resistor, so the total impedance of the circuit is R and the current is  

IR ( )t = V0 sin  ωt (12.9.25)
R 

(b) The average power is given by 

V 2 2 

= 0P t( )  = ( )  ( )  I  t V t  sin  2 ωt = V0 (12.9.26)R R 2R 

12-31 



(c) If only S1 is opened, after a long time the current will pass through the generator, the 
resistor and the inductor. For this RL circuit, the impedance becomes 

1 1Z = = (12.9.27)
R2 + X L 

2 R2 +ω2 L2 

and the phase angle φ is 
ωL− ⎛  ⎞  φ = tan 1 

⎜ ⎟ (12.9.28)
R⎝ ⎠

Thus, the current as a function of time is  

I t( ) = I0 sin(ω φt − =  )
2 

V0 
2 2

sin ⎛⎜ωt − tan −1 ωL ⎞
⎟ (12.9.29)

R +ω L ⎝ R ⎠ 

Note that in the limit of vanishing resistance R = 0 , φ = π / 2 , and we recover the 
expected result for a purely inductive circuit. 

(d) If both switches are opened, then this would be a driven RLC circuit, with the phase 
angle φ given by 

1 
X L − XC 

ωL −
ωCtan φ = =  (12.9.30)

R R 

If the current and the voltage are in phase, then φ = 0 , implying tanφ = 0 . Let the 
corresponding angular frequency be ω0 ; we then obtain 

ω0 L =
ω 

1

0C 
(12.9.31) 

and the capacitance is  
1C = 2 (12.9.32)

ω0 L 

(e) From (d), we see that when both switches are opened, the circuit is at resonance 
with X L = XC . Thus, the impedance of the circuit becomes 

Z = R2 + (X L − XC )
2 = R (12.9.33) 

(f) The electric energy stored in the capacitor is  
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UE = 1 CV C 
2 = 1 C IX( C )

2 (12.9.34)
2 2 

It attains maximum when the current is at its maximum I :0 

,maxCU = 2 2 
0 

1 
2 CCI X = 01 

2 
VC 
R 

⎛ 
⎜⎝ 

2
⎞ 
⎟⎠ 2 2 

0 

1 
Cω 

= 
2 

0 
22 

V L 
R 

(12.9.35) 

where we have used 2 
0 1/ LCω = . 

(g) The maximum energy stored in the inductor is given by 

,maxLU = 1 
2 

2 
0LI =

2 
0 
22 

LV 
R 

(12.9.36) 

(h) If the frequency of the voltage source is doubled, i.e.,ω = 02ω 1/= LC , then the 
phase becomes 

φ = 1 1/tan L C 
R 

ω ω− −⎛ 
⎜⎝ 

⎞ 
⎟⎠ 

= 
(1 
2 /  

tan− 
⎛ 
⎜ 
⎜ 
⎝ 

) (LC L 

R 

− LC )/ 2C ⎞ 
⎟ 
⎟ 
⎠

= 1tan− ⎛ 
⎜⎜⎝ 

3 
2R 

L 
C 

⎞ 
⎟⎟⎠ 

(12.9.37) 

(i) If the inductive reactance is one-half the capacitive reactance, 

LX = 1 
2 CX ⇒ Lω = 1 1 

2 Cω 
⎛ ⎞ 
⎜ ⎟⎝ ⎠

 (12.9.38) 

then 

ω = 1 
2LC 

= 0 

2 
ω (12.9.39) 

12.9.6 RL Filter 

The circuit shown in Figure 12.9.4 represents an RL filter. 

Figure 12.9.4 
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Let the inductance be L = 400 mH, and the input voltage Vin = (20.0 V sin ) ωt  , where 
ω = 200 rad/s . 

(a) What is the value of R such that the output voltage lags behind the input voltage 
by30.0° ? 

(b) Find the ratio of the amplitude of the output and the input voltages. What type of filter 
is this circuit, high-pass or low-pass? 

(c) If the positions of the resistor and the inductor are switched, would the circuit be a 
high-pass or a low-pass filter? 

Solutions: 

(a) The phase relationship between VL  and VR is given by 

tan φ = VL = IX  L = ω L (12.9.40)
VR IX  R R 

Thus, we have 
ωL (200 rad/s )(  0.400 H )R = = = 139 Ω (12.9.41)

tan φ tan 30.0 °

(b) The ratio is given by 

Vout = VR = R = cosφ = cos30.0 ° =  0.866. (12.9.42)
Vin Vin R2 + X L 

2 

The circuit is a low-pass filter, since the ratio Vout /Vin decreases with increasing ω . 

(c) In this case, the circuit diagram is 

Figure 12.9.5 RL high-pass filter 

The ratio of the output voltage to the input voltage would be 

12-34 



2 2  ⎡ 2 ⎤
−1/ 2 

Vout VL X L ω L ⎛ R ⎞ 
Vin 

= 
Vin 

= 
R2 + X L 

2 
= 

R2 +ω 2 L2 
= 

⎣⎢
⎢1+

⎝⎜ ωL ⎠⎟ 
⎦⎥
⎥ 

The circuit is a high-pass filter, since the ratio Vout /Vin approaches one in the large-ω 
limit.  

12.10 Conceptual Questions 

1. Consider a purely capacitive circuit (a capacitor connected to an AC source). 

(a) How does the capacitive reactance change if the driving frequency is doubled? 
halved? 

(b) Are there any times when the capacitor is supplying power to the AC source? 

2. If the applied voltage leads the current in a series RLC circuit, is the frequency above 
or below resonance? 

3. Consider the phasor diagram shown in Figure 12.10.1 for an RLC circuit. 

(a) Is the driving frequency above or below the resonant frequency? 

r
(b) Draw the phasor V0  associated with the amplitude of the applied voltage. 

(c) Give an estimate of the phase φ  between the applied AC voltage and the current. 

4. How does the power factor in an RLC circuit change with resistance R, inductance L 
and capacitance C? 

5. Can a battery be used as the primary voltage source in a transformer? 

12-35 



6. If the power factor in an RLC circuit is cos φ = 1/ 2 , can you tell whether the current 
leading or lagging the voltage? Explain. 

12.11 Additional Problems 

12.11.1 Reactance of a Capacitor and an Inductor 

(a) A C = 0.5 − μF capacitor is connected, as shown in Figure 12.11.1(a), to an AC 
generator with V0 = 300 V . What is the amplitude I0 of the resulting alternating current 
if the angular frequency ωis (i) 100 rad/s, and (ii) 1000 rad/s? 

Figure 12.11.1 (a) A purely capacitive circuit, and (b) a purely inductive circuit. 

(b) A 45-mH inductor is connected, as shown in Figure 12.10.1(b), to an AC generator 
with V0 = 300 V . The inductor has a reactance X L = 1300 Ω . What must be  

(i) the applied angular frequency ω and  

(ii) the applied frequency f for this to be true?   

(iii) What is the amplitude I0  of the resulting alternating current? 

(c) At what frequency f would our 0.5-μF capacitor and our 45-mH inductor have the 
same reactance? What would this reactance be?  How would this frequency compare to 
the natural resonant frequency of free oscillations if the components were connected as 
an LC oscillator with zero resistance?   

12.11.2 Driven RLC Circuit Near Resonance 

The circuit shown in Figure 12.11.2 contains an inductor L, a capacitor C, and a resistor R 
in series with an AC generator which provides a source of sinusoidally varying emf 
V t( )  = V0 sin  ωt . 
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Figure 12.11.2 

I t  0 ω φThis emf drives current ( )  = I sin(  t − ) through the circuit at angular frequencyω . 

(a) At what angular frequency ω will the circuit resonate with maximum response, as 
measured by the amplitude I0 of the current in the circuit?  What is the value of the 
maximum current amplitude Imax ? 

(b) What is the value of the phase angle φ between V t( )  and I ( )t at this resonant 
frequency? 

(c) Suppose the frequency ωis increased from the resonance value until the amplitude I0 

of the current decreases from I  to I / 2  . Now what is the phase difference φmax max 

between the emf and the current? Does the current lead or lag the emf?  

12.11.3 RC Circuit 

A series RC circuit with R = 4.0 103 and C = 0.40× Ω μF is connected to an AC voltage 
source V t( ) = (100 V)sin ωt , with ω = 200 rad/s . 

(a) What is the rms current in the circuit? 

(b) What is the phase between the voltage and the current? 

(c) Find the power dissipated in the circuit. 

(d) Find the voltage drop both across the resistor and the capacitor. 

12.11.4 Black Box 

An AC voltage source is connected to a “black box” which contains a circuit, as shown in 
Figure 12.11.3. 
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Figure 12.11.3 A “black box” connected to an AC voltage source. 

The elements in the circuit and their arrangement, however, are unknown. Measurements 
outside the black box provide the following information: 

V t( ) = (80 V)sin ωt

I t( ) = (1.6 A)sin( ωt + 45 ) °


(a) Does the current lead or lag the voltage? 

(b) Is the circuit in the black box largely capacitive or inductive? 

(c) Is the circuit in the black box at resonance? 

(d) What is the power factor? 

(e) Does the box contain a resistor? A capacitor? An inductor? 

(f) Compute the average power delivered to the black box by the AC source. 

12.11.5 Parallel RL Circuit 

Consider the parallel RL circuit shown in Figure 12.11.4. 

Figure 12.11.4 Parallel RL circuit 

The AC voltage source is V t( )  =V0 sin  ωt . 

(a) Find the current across the resistor. 
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(b) Find the current across the inductor. 

(c) What is the magnitude of the total current? 

(d) Find the impedance of the circuit. 

(e) What is the phase angle between the current and the voltage? 

12.11.6 LC Circuit 

Suppose at t = 0 the capacitor in the LC circuit is fully charged to Q0 . At a later time 
t T  / 6   , where T is the period of the LC oscillation, find the ratio of each of the =
following quantities to its maximum value: 

(a) charge on the capacitor, 

(b) energy stored in the capacitor, 

(c) current in the inductor, and 

(d) energy in the inductor. 

12.11.7 Parallel RC Circuit 

Consider the parallel RC circuit shown in Figure 12.11.5. 

Figure 12.11.5 Parallel RC circuit 

The AC voltage source is V t( )  =V0 sin  ωt . 

(a) Find the current across the resistor. 

(b) Find the current across the capacitor. 

(c) What is the magnitude of the total current? 
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(d) Find the impedance of the circuit. 

(e) What is the phase angle between the current and the voltage? 

12.11.8 Power Dissipation 

A series RLC circuit with R =10.0 Ω , L = 400 mH and C = 2.0 μF is connected to an 
AC voltage source which has a maximum amplitude V0 =100 V . 

(a) What is the resonant frequency ω0 ? 

(b) Find the rms current at resonance. 

(c) Let the driving frequency be ω = 4000 rad/s . Compute XC , X L , Z and φ . 

12.11.9  FM Antenna 

An FM antenna circuit (shown in Figure 12.11.6) has an inductance L =10−6  H , a 
capacitance C =10−12  F and a resistance R = 100Ω . A radio signal induces a 
sinusoidally  alternating emf in the antenna with an amplitude of  10−5  V . 

Figure 12.11.6 

(a) For what angular frequency ω0 (radians/sec) of the incoming waves will the circuit 
be “in tune”-- that is, for what ω0 will the current in the circuit be a maximum.   

(b) What is the quality factor Q  of the resonance? 

(c) Assuming that the incoming wave is “in tune,” what will be the amplitude of the 
current in the circuit at this “in tune” frequency.   

(d) What is the amplitude of the potential difference across the capacitor at this “in 
tune” frequency? 
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12.11.10 Driven RLC Circuit 

Suppose you want a series RLC circuit to tune to your favorite FM radio station that 
broadcasts at a frequency of 89.7 MHz . You would like to avoid the obnoxious station 
that broadcasts at 89.5MHz . In order to achieve this, for a given input voltage signal 
from your antenna, you want the width of your resonance to be narrow enough at 
89.7 MHz such that the current flowing in your circuit will be 10−2 times less at 
89.5MHz than at 89.7 MHz . You cannot avoid having a resistance of R = 0.1Ω , and 
practical considerations also dictate that you use the minimum L  possible. 

(a) In terms of your circuit parameters, L , R  and C , what is the amplitude of your 
current in your circuit as a function of the angular frequency of the input signal? 

(b) What is the angular frequency of the input signal at the desired resonance? 

(c) What values of L  and C must you use? 

(d) What is the quality factor for this resonance? 

(e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor 
with the driving signal amplitude is the quality of the resonance. 

(f) Show that at resonance the ratio of the amplitude of the voltage across the capacitor 
with the driving signal amplitude is the quality of the resonance. 

(g) What is the time averaged power at resonance that the signal delivers to the circuit? 

(h) What is the phase shift for the input signal at 89.5MHz ? 

(i) What is the time averaged power for the input signal at 89.5MHz ? 

(j) Is the circuit capacitive or inductive at 89.5MHz ? 
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