Module 25: Alternating-Current Circuits ${ }^{1}$ Table of Contents

12.1 AC Sources 12-2
12.2 Simple AC circuits 12-3
12.2.1 Purely Resistive load 12-3
12.2.2 Purely Inductive Load 12-5
12.2.3 Purely Capacitive Load 12-7
12.3 The RLC Series Circuit 12-9
12.3.1 Impedance 12-12
12.3.2 Resonance 12-13
12.4 Power in an AC circuit. 12-14
12.4.1 Width of the Peak. 12-16
12.5 Transformer 12-17
12.6 Parallel RLC Circuit. 12-19
12.7 Summary 12-22
12.8 Problem-Solving Tips 12-24
12.9 Solved Problems 12-26
12.9.1 RLC Series Circuit 12-26
12.9.2 RLC Series Circuit 12-27
12.9.3 Resonance 12-28
12.9.4 RL High-Pass Filter 12-29
12.9.5 RLC Circuit 12-30
12.9.6 RL Filter 12-33
12.10 Conceptual Questions 12-35
12.11 Additional Problems 12-36
12.11.1 Reactance of a Capacitor and an Inductor 12-36
12.11.2 Driven RLC Circuit Near Resonance 12-36
12.11.3 RC Circuit 12-37
12.11.4 Black Box 12-37
12.11.5 Parallel RL Circuit. 12-38
12.11.6 LC Circuit. 12-39
12.11.7 Parallel RC Circuit 12-39
12.11.8 Power Dissipation 12-40
12.11.9 FM Antenna 12-40
12.11.10 Driven RLC Circuit 12-41

[^0]
Alternating-Current Circuits

12.1 AC Sources

In Chapter 10 we learned that changing magnetic flux can induce an emf according to Faraday's law of induction. In particular, if a coil rotates in the presence of a magnetic field, the induced emf varies sinusoidally with time and leads to an alternating current (AC), and provides a source of AC power. The symbol for an AC voltage source is

An example of an AC source is

$$
\begin{equation*}
V(t)=V_{0} \sin \omega t \tag{12.1.1}
\end{equation*}
$$

where the maximum value V_{0} is called the amplitude. The voltage varies between V_{0} and $-V_{0}$ since a sine function varies between +1 and -1 . A graph of voltage as a function of time is shown in Figure 12.1.1.

Figure 12.1.1 Sinusoidal voltage source
The sine function is periodic in time. This means that the value of the voltage at time t will be exactly the same at a later time $t^{\prime}=t+T$ where T is the period. The frequency, f, defined as $f=1 / T$, has the unit of inverse seconds $\left(\mathrm{s}^{-1}\right)$, or hertz (Hz). The angular frequency is defined to be $\omega=2 \pi f$.

When a voltage source is connected to an RLC circuit, energy is provided to compensate the energy dissipation in the resistor, and the oscillation will no longer damp out. The oscillations of charge, current and potential difference are called driven or forced oscillations.

After an initial "transient time," an AC current will flow in the circuit as a response to the driving voltage source. The current, written as

$$
\begin{equation*}
I(t)=I_{0} \sin (\omega t-\phi) \tag{12.1.2}
\end{equation*}
$$

will oscillate with the same frequency as the voltage source, with an amplitude I_{0} and phase ϕ that depends on the driving frequency.

12.2 Simple AC circuits

Before examining the driven RLC circuit, let's first consider the simple cases where only one circuit element (a resistor, an inductor or a capacitor) is connected to a sinusoidal voltage source.

12.2.1 Purely Resistive load

Consider a purely resistive circuit with a resistor connected to an AC generator, as shown in Figure 12.2.1. (As we shall see, a purely resistive circuit corresponds to infinite capacitance $C=\infty$ and zero inductance $L=0$.)

Figure 12.2.1 A purely resistive circuit
Applying Kirchhoff's loop rule yields

$$
\begin{equation*}
V(t)-V_{R}(t)=V(t)-I_{R}(t) R=0 \tag{12.2.1}
\end{equation*}
$$

where $V_{R}(t)=I_{R}(t) R$ is the instantaneous voltage drop across the resistor. The instantaneous current in the resistor is given by

$$
\begin{equation*}
I_{R}(t)=\frac{V_{R}(t)}{R}=\frac{V_{R 0} \sin \omega t}{R}=I_{R 0} \sin \omega t \tag{12.2.2}
\end{equation*}
$$

where $V_{R 0}=V_{0}$, and $I_{R 0}=V_{R 0} / R$ is the maximum current. Comparing Eq. (12.2.2) with Eq. (12.1.2), we find $\phi=0$, which means that $I_{R}(t)$ and $V_{R}(t)$ are in phase with each other, meaning that they reach their maximum or minimum values at the same time. The time dependence of the current and the voltage across the resistor is depicted in Figure 12.2.2(a).

Figure 12.2.2 (a) Time dependence of $I_{R}(t)$ and $V_{R}(t)$ across the resistor. (b) Phasor diagram for the resistive circuit.

The behavior of $I_{R}(t)$ and $V_{R}(t)$ can also be represented with a phasor diagram, as shown in Figure 12.2.2(b). A phasor is a rotating vector having the following properties:
(i) length: the length corresponds to the amplitude.
(ii) angular speed: the vector rotates counterclockwise with an angular speed ω
(iii) projection: the projection of the vector along the vertical axis corresponds to the value of the alternating quantity at time t.

We shall denote a phasor with an arrow above it. The phasor $\vec{V}_{R 0}$ has a constant magnitude of $V_{R 0}$. Its projection along the vertical direction is $V_{R 0} \sin \omega t$, which is equal to $V_{R}(t)$, the voltage drop across the resistor at time t. A similar interpretation applies to $\vec{I}_{R 0}$ for the current passing through the resistor. From the phasor diagram, we readily see that both the current and the voltage are in phase with each other.

The average value of current over one period can be obtained as:

$$
\begin{equation*}
\left\langle I_{R}(t)\right\rangle=\frac{1}{T} \int_{0}^{T} I_{R}(t) d t=\frac{1}{T} \int_{0}^{T} I_{R 0} \sin \omega t d t=\frac{I_{R 0}}{T} \int_{0}^{T} \sin \frac{2 \pi t}{T} d t=0 \tag{12.2.3}
\end{equation*}
$$

This average vanishes because

$$
\begin{equation*}
\langle\sin \omega t\rangle=\frac{1}{T} \int_{0}^{T} \sin \omega t d t=0 \tag{12.2.4}
\end{equation*}
$$

Similarly, one may find the following relations useful when averaging over one period:

$$
\begin{align*}
\langle\cos \omega t\rangle & =\frac{1}{T} \int_{0}^{T} \cos \omega t d t=0 \\
\langle\sin \omega t \cos \omega t\rangle & =\frac{1}{T} \int_{0}^{T} \sin \omega t \cos \omega t d t=0 \\
\left\langle\sin ^{2} \omega t\right\rangle & =\frac{1}{T} \int_{0}^{T} \sin ^{2} \omega t d t=\frac{1}{T} \int_{0}^{T} \sin ^{2}\left(\frac{2 \pi t}{T}\right) d t=\frac{1}{2} \tag{12.2.5}\\
\left\langle\cos ^{2} \omega t\right\rangle & =\frac{1}{T} \int_{0}^{T} \cos ^{2} \omega t d t=\frac{1}{T} \int_{0}^{T} \cos ^{2}\left(\frac{2 \pi t}{T}\right) d t=\frac{1}{2}
\end{align*}
$$

From the above, we see that the average of the square of the current is non-vanishing:

$$
\begin{equation*}
\left\langle I_{R}^{2}(t)\right\rangle=\frac{1}{T} \int_{0}^{T} I_{R}^{2}(t) d t=\frac{1}{T} \int_{0}^{T} I_{R 0}^{2} \sin ^{2} \omega t d t=I_{R 0}^{2} \frac{1}{T} \int_{0}^{T} \sin ^{2}\left(\frac{2 \pi t}{T}\right) d t=\frac{1}{2} I_{R 0}^{2} \tag{12.2.6}
\end{equation*}
$$

It is convenient to define the root-mean-square (rms) current as

$$
\begin{equation*}
I_{\mathrm{rms}}=\sqrt{\left\langle I_{R}^{2}(t)\right\rangle}=\frac{I_{R 0}}{\sqrt{2}} \tag{12.2.7}
\end{equation*}
$$

In a similar manner, the rms voltage can be defined as

$$
\begin{equation*}
V_{\mathrm{rms}}=\sqrt{\left\langle V_{R}^{2}(t)\right\rangle}=\frac{V_{R 0}}{\sqrt{2}} \tag{12.2.8}
\end{equation*}
$$

The rms voltage supplied to the domestic wall outlets in the United States is $V_{\mathrm{rms}}=120 \mathrm{~V}$ at a frequency $f=60 \mathrm{~Hz}$.

The power dissipated in the resistor is

$$
\begin{equation*}
P_{R}(t)=I_{R}(t) V_{R}(t)=I_{R}^{2}(t) R \tag{12.2.9}
\end{equation*}
$$

from which the average over one period is obtained as:

$$
\begin{equation*}
\left\langle P_{R}(t)\right\rangle=\left\langle I_{R}^{2}(t) R\right\rangle=\frac{1}{2} I_{R 0}^{2} R=I_{\mathrm{rms}}^{2} R=I_{\mathrm{rms}} V_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}^{2}}{R} \tag{12.2.10}
\end{equation*}
$$

12.2.2 Purely Inductive Load

Consider now a purely inductive circuit with an inductor connected to an AC generator, as shown in Figure 12.2.3.

Figure 12.2.3 A purely inductive circuit
As we shall see below, a purely inductive circuit corresponds to infinite capacitance $C=\infty$ and zero resistance $R=0$. Applying the modified Kirchhoff's rule for inductors, the circuit equation reads

$$
\begin{equation*}
V(t)-V_{L}(t)=V(t)-L \frac{d I_{L}}{d t}=0 \tag{12.2.11}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{d I_{L}}{d t}=\frac{V(t)}{L}=\frac{V_{L 0}}{L} \sin \omega t \tag{12.2.12}
\end{equation*}
$$

where $V_{L 0}=V_{0}$. Integrating over the above equation, we find

$$
\begin{equation*}
I_{L}(t)=\int d I_{L}=\frac{V_{L 0}}{L} \int \sin \omega t d t=-\left(\frac{V_{L 0}}{\omega L}\right) \cos \omega t=\left(\frac{V_{L 0}}{\omega L}\right) \sin \left(\omega t-\frac{\pi}{2}\right) \tag{12.2.13}
\end{equation*}
$$

where we have used the trigonometric identity

$$
\begin{equation*}
-\cos \omega t=\sin \left(\omega t-\frac{\pi}{2}\right) \tag{12.2.14}
\end{equation*}
$$

for rewriting the last expression. Comparing Eq. (12.2.14) with Eq. (12.1.2), we see that the amplitude of the current through the inductor is

$$
\begin{equation*}
I_{L 0}=\frac{V_{L 0}}{\omega L}=\frac{V_{L 0}}{X_{L}} \tag{12.2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{L}=\omega L \tag{12.2.16}
\end{equation*}
$$

is called the inductive reactance. It has SI units of ohms (Ω), just like resistance. However, unlike resistance, X_{L} depends linearly on the angular frequency ω Thus, the resistance to current flow increases with frequency. This is due to the fact that at higher
frequencies the current changes more rapidly than it does at lower frequencies. On the other hand, the inductive reactance vanishes as ω approaches zero.

By comparing Eq. (12.2.14) to Eq. (12.1.2), we also find the phase constant to be

$$
\begin{equation*}
\phi=+\frac{\pi}{2} \tag{12.2.17}
\end{equation*}
$$

The current and voltage plots and the corresponding phasor diagram are shown in the Figure 12.2.4 below.

Figure 12.2.4 (a) Time dependence of $I_{L}(t)$ and $V_{L}(t)$ across the inductor. (b) Phasor diagram for the inductive circuit.

As can be seen from the figures, the current $I_{L}(t)$ is out of phase with $V_{L}(t)$ by $\phi=\pi / 2$; it reaches its maximum value after $V_{L}(t)$ does by one quarter of a cycle. Thus, we say that

The current lags voltage by $\pi / 2$ in a purely inductive circuit

12.2.3 Purely Capacitive Load

In the purely capacitive case, both resistance R and inductance L are zero. The circuit diagram is shown in Figure 12.2.5.

Figure 12.2.5 A purely capacitive circuit

Again, Kirchhoff's voltage rule implies

$$
\begin{equation*}
V(t)-V_{C}(t)=V(t)-\frac{Q(t)}{C}=0 \tag{12.2.18}
\end{equation*}
$$

which yields

$$
\begin{equation*}
Q(t)=C V(t)=C V_{C}(t)=C V_{C 0} \sin \omega t \tag{12.2.19}
\end{equation*}
$$

where $V_{C 0}=V_{0}$. On the other hand, the current is

$$
\begin{equation*}
I_{C}(t)=+\frac{d Q}{d t}=\omega C V_{C 0} \cos \omega t=\omega C V_{C 0} \sin \left(\omega t+\frac{\pi}{2}\right) \tag{12.2.20}
\end{equation*}
$$

where we have used the trigonometric identity

$$
\begin{equation*}
\cos \omega t=\sin \left(\omega t+\frac{\pi}{2}\right) \tag{12.2.21}
\end{equation*}
$$

The above equation indicates that the maximum value of the current is

$$
\begin{equation*}
I_{C 0}=\omega C V_{C 0}=\frac{V_{C 0}}{X_{C}} \tag{12.2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{C}=\frac{1}{\omega C} \tag{12.2.23}
\end{equation*}
$$

is called the capacitance reactance. It also has SI units of ohms and represents the effective resistance for a purely capacitive circuit. Note that X_{C} is inversely proportional to both C and ω, and diverges as ω approaches zero.

By comparing Eq. (12.2.21) to Eq. (12.1.2), the phase constant is given by

$$
\begin{equation*}
\phi=-\frac{\pi}{2} \tag{12.2.24}
\end{equation*}
$$

The current and voltage plots and the corresponding phasor diagram are shown in the Figure 12.2.6 below.

Figure 12.2.6 (a) Time dependence of $I_{C}(t)$ and $V_{C}(t)$ across the capacitor. (b) Phasor diagram for the capacitive circuit.

Notice that at $t=0$, the voltage across the capacitor is zero while the current in the circuit is at a maximum. In fact, $I_{C}(t)$ reaches its maximum before $V_{C}(t)$ by one quarter of a cycle ($\phi=\pi / 2$). Thus, we say that

The current leads the voltage by $\pi / 2$ in a capacitive circuit

12.3 The RLC Series Circuit

Consider now the driven series $R L C$ circuit shown in Figure 12.3.1.

Figure 12.3.1 Driven series RLC Circuit
Applying Kirchhoff’s loop rule, we obtain

$$
\begin{equation*}
V(t)-V_{R}(t)-V_{L}(t)-V_{C}(t)=V(t)-I R-L \frac{d I}{d t}-\frac{Q}{C}=0 \tag{12.3.1}
\end{equation*}
$$

which leads to the following differential equation:

$$
\begin{equation*}
L \frac{d I}{d t}+I R+\frac{Q}{C}=V_{0} \sin \omega t \tag{12.3.2}
\end{equation*}
$$

Assuming that the capacitor is initially uncharged so that $I=+d Q / d t$ is proportional to the increase of charge in the capacitor, the above equation can be rewritten as

$$
\begin{equation*}
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{Q}{C}=V_{0} \sin \omega t \tag{12.3.3}
\end{equation*}
$$

One possible solution to Eq. (12.3.3) is

$$
\begin{equation*}
Q(t)=Q_{0} \cos (\omega t-\phi) \tag{12.3.4}
\end{equation*}
$$

where the amplitude and the phase are, respectively,

$$
\begin{align*}
Q_{0} & =\frac{V_{0} / L}{\sqrt{(R \omega / L)^{2}+\left(\omega^{2}-1 / L C\right)^{2}}}=\frac{V_{0}}{\omega \sqrt{R^{2}+(\omega L-1 / \omega C)^{2}}} \tag{12.3.5}\\
& =\frac{V_{0}}{\omega \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
\end{align*}
$$

and

$$
\begin{equation*}
\tan \phi=\frac{1}{R}\left(\omega L-\frac{1}{\omega C}\right)=\frac{X_{L}-X_{C}}{R} \tag{12.3.6}
\end{equation*}
$$

The corresponding current is

$$
\begin{equation*}
I(t)=+\frac{d Q}{d t}=I_{0} \sin (\omega t-\phi) \tag{12.3.7}
\end{equation*}
$$

with an amplitude

$$
\begin{equation*}
I_{0}=-Q_{0} \omega=-\frac{V_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}} \tag{12.3.8}
\end{equation*}
$$

Notice that the current has the same amplitude and phase at all points in the series $R L C$ circuit. On the other hand, the instantaneous voltage across each of the three circuit elements R, L and C has a different amplitude and phase relationship with the current, as can be seen from the phasor diagrams shown in Figure 12.3.2.

Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a) the resistor, (b) the inductor, and (c) the capacitor, of a series RLC circuit.

From Figure 12.3.2, the instantaneous voltages can be obtained as:

$$
\begin{align*}
& V_{R}(t)=I_{0} R \sin \omega t=V_{R 0} \sin \omega t \\
& V_{L}(t)=I_{0} X_{L} \sin \left(\omega t+\frac{\pi}{2}\right)=V_{L 0} \cos \omega t \tag{12.3.9}\\
& V_{C}(t)=I_{0} X_{C} \sin \left(\omega t-\frac{\pi}{2}\right)=-V_{C 0} \cos \omega t
\end{align*}
$$

where

$$
\begin{equation*}
V_{R 0}=I_{0} R, \quad V_{L 0}=I_{0} X_{L}, \quad V_{C 0}=I_{0} X_{C} \tag{12.3.10}
\end{equation*}
$$

are the amplitudes of the voltages across the circuit elements. The sum of all three voltages is equal to the instantaneous voltage supplied by the AC source:

$$
\begin{equation*}
V(t)=V_{R}(t)+V_{L}(t)+V_{C}(t) \tag{12.3.11}
\end{equation*}
$$

Using the phasor representation, the above expression can also be written as

$$
\begin{equation*}
\vec{V}_{0}=\vec{V}_{R 0}+\vec{V}_{L 0}+\vec{V}_{C 0} \tag{12.3.12}
\end{equation*}
$$

as shown in Figure 12.3.3 (a). Again we see that current phasor \vec{I}_{0} leads the capacitive voltage phasor $\vec{V}_{C 0}$ by $\pi / 2$ but lags the inductive voltage phasor $\vec{V}_{L 0}$ by $\pi / 2$. The three voltage phasors rotate counterclockwise as time passes, with their relative positions fixed.

Figure 12.3 .3 (a) Phasor diagram for the series $R L C$ circuit. (b) voltage relationship
The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b). From the Figure, we see that

$$
\begin{align*}
V_{0} & =\left|\vec{V}_{0}\right|=\left|\vec{V}_{R 0}+\vec{V}_{L 0}+\vec{V}_{C 0}\right|=\sqrt{V_{R 0}^{2}+\left(V_{L 0}-V_{C 0}\right)^{2}} \\
& =\sqrt{\left(I_{0} R\right)^{2}+\left(I_{0} X_{L}-I_{0} X_{C}\right)^{2}} \tag{12.3.13}\\
& =I_{0} \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
\end{align*}
$$

which leads to the same expression for I_{0} as that obtained in Eq. (12.3.7).
It is crucial to note that the maximum amplitude of the AC voltage source V_{0} is not equal to the sum of the maximum voltage amplitudes across the three circuit elements:

$$
\begin{equation*}
V_{0} \neq V_{R 0}+V_{L 0}+V_{C 0} \tag{12.3.14}
\end{equation*}
$$

This is due to the fact that the voltages are not in phase with one another, and they reach their maxima at different times.

12.3.1 Impedance

We have already seen that the inductive reactance $X_{L}=\omega L$ and capacitance reactance $X_{C}=1 / \omega C$ play the role of an effective resistance in the purely inductive and capacitive circuits, respectively. In the series $R L C$ circuit, the effective resistance is the impedance, defined as

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{12.3.15}
\end{equation*}
$$

The relationship between Z, X_{L} and X_{C} can be represented by the diagram shown in Figure 12.3.4:

Figure 12.3.4 Diagrammatic representation of the relationship between Z, X_{L} and X_{C}.

The impedance also has SI units of ohms. In terms of Z, the current may be rewritten as

$$
\begin{equation*}
I(t)=\frac{V_{0}}{Z} \sin (\omega t-\phi) \tag{12.3.16}
\end{equation*}
$$

Notice that the impedance Z also depends on the angular frequency ω as do X_{L} and X_{C}.
Using Eq. (12.3.6) for the phase ϕ and Eq. (12.3.15) for Z, we may readily recover the limits for simple circuit (with only one element). A summary is provided in Table 12.1 below:

Simple Circuit	R	L	C	$X_{L}=\omega L$	$X_{C}=\frac{1}{\omega C}$	$\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)$	$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
purely resistive	R	0	∞	0	0	0	R
purely inductive	0	L	∞	X_{L}	0	$\pi / 2$	X_{L}
purely capacitive	0	0	C	0	X_{C}	$-\pi / 2$	X_{C}

Table 12.1 Simple-circuit limits of the series $R L C$ circuit

12.3.2 Resonance

Eq. (12.3.15) indicates that the amplitude of the current $I_{0}=V_{0} / Z$ reaches a maximum when Z is at a minimum. This occurs when $X_{L}=X_{C}$, or $\omega L=1 / \omega C$, leading to

$$
\begin{equation*}
\omega_{0}=\frac{1}{\sqrt{L C}} \tag{12.3.17}
\end{equation*}
$$

The phenomenon at which I_{0} reaches a maximum is called a resonance, and the frequency ω_{0} is called the resonant frequency. At resonance, the impedance becomes $Z=R$, the amplitude of the current is

$$
\begin{equation*}
I_{0}=\frac{V_{0}}{R} \tag{12.3.18}
\end{equation*}
$$

and the phase is

$$
\begin{equation*}
\phi=0 \tag{12.3.19}
\end{equation*}
$$

as can be seen from Eq. (12.3.5). The qualitative behavior is illustrated in Figure 12.3.5.

Figure 12.3.5 The amplitude of the current as a function of ω in the driven $R L C$ circuit.

12.4 Power in an AC circuit

In the series RLC circuit, the instantaneous power delivered by the AC generator is given by

$$
\begin{align*}
P(t) & =I(t) V(t)=\frac{V_{0}}{Z} \sin (\omega t-\phi) \cdot V_{0} \sin \omega t=\frac{V_{0}^{2}}{Z} \sin (\omega t-\phi) \sin \omega t \tag{12.4.1}\\
& =\frac{V_{0}^{2}}{Z}\left(\sin ^{2} \omega t \cos \phi-\sin \omega t \cos \omega t \sin \phi\right)
\end{align*}
$$

where we have used the trigonometric identity

$$
\begin{equation*}
\sin (\omega t-\phi)=\sin \omega t \cos \phi-\cos \omega t \sin \phi \tag{12.4.2}
\end{equation*}
$$

The time average of the power is

$$
\begin{align*}
\langle P(t)\rangle & =\frac{1}{T} \int_{0}^{T} \frac{V_{0}^{2}}{Z} \sin ^{2} \omega t \cos \phi d t-\frac{1}{T} \int_{0}^{T} \frac{V_{0}^{2}}{Z} \sin \omega t \cos \omega t \sin \phi d t \\
& =\frac{V_{0}^{2}}{Z} \cos \phi\left\langle\sin ^{2} \omega t\right\rangle-\frac{V_{0}^{2}}{Z} \sin \phi\langle\sin \omega t \cos \omega t\rangle \tag{12.4.3}\\
& =\frac{1}{2} \frac{V_{0}^{2}}{Z} \cos \phi
\end{align*}
$$

where Eqs. (12.2.5) and (12.2.7) have been used. In terms of the rms quantities, the average power can be rewritten as

$$
\begin{equation*}
\langle P(t)\rangle=\frac{1}{2} \frac{V_{0}^{2}}{Z} \cos \phi=\frac{V_{\mathrm{rms}}^{2}}{Z} \cos \phi=I_{\mathrm{rms}} V_{\mathrm{rms}} \cos \phi \tag{12.4.4}
\end{equation*}
$$

The quantity $\cos \phi$ is called the power factor. From Figure 12.3.4, one can readily show that

$$
\begin{equation*}
\cos \phi=\frac{R}{Z} \tag{12.4.5}
\end{equation*}
$$

Thus, we may rewrite $\langle P(t)\rangle$ as

$$
\begin{equation*}
\langle P(t)\rangle=I_{\mathrm{rms}} V_{\mathrm{rms}}\left(\frac{R}{Z}\right)=I_{\mathrm{rms}}\left(\frac{V_{\mathrm{rms}}}{Z}\right) R=I_{\mathrm{rms}}^{2} R \tag{12.4.6}
\end{equation*}
$$

In Figure 12.4.1, we plot the average power as a function of the driving angular frequency ω

Figure 12.4.1 Average power as a function of frequency in a driven series $R L C$ circuit.
We see that $\langle P(t)\rangle$ attains the maximum when $\cos \phi=1$, or $Z=R$, which is the resonance condition. At resonance, we have

$$
\begin{equation*}
\langle P\rangle_{\max }=I_{\mathrm{rms}} V_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}^{2}}{R} \tag{12.4.7}
\end{equation*}
$$

12.4.1 Width of the Peak

The peak has a line width. One way to characterize the width is to define $\Delta \omega=\omega_{+}-\omega_{-}$, where $\omega_{ \pm}$are the values of the driving angular frequency such that the power is equal to half its maximum power at resonance. This is called full width at half maximum, as illustrated in Figure 12.4.2. The width $\Delta \omega$ increases with resistance R.

Figure 12.4.2 Width of the peak
To find $\Delta \omega$, it is instructive to first rewrite the average power $\langle P(t)\rangle$ as

$$
\begin{equation*}
\langle P(t)\rangle=\frac{1}{2} \frac{V_{0}^{2} R}{R^{2}+(\omega L-1 / \omega C)^{2}}=\frac{1}{2} \frac{V_{0}^{2} R \omega^{2}}{\omega^{2} R^{2}+L^{2}\left(\omega^{2}-\omega_{0}^{2}\right)^{2}} \tag{12.4.8}
\end{equation*}
$$

with $\langle P(t)\rangle_{\max }=V_{0}^{2} / 2 R$. The condition for finding $\omega_{ \pm}$is

$$
\begin{equation*}
\frac{1}{2}\langle P(t)\rangle_{\max }=\left.\langle P(t)\rangle\right|_{\omega_{ \pm}} \Rightarrow=\frac{V_{0}^{2}}{4 R}=\left.\frac{1}{2} \frac{V_{0}^{2} R \omega^{2}}{\omega^{2} R^{2}+L^{2}\left(\omega^{2}-\omega_{0}^{2}\right)^{2}}\right|_{\omega_{ \pm}} \tag{12.4.9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left(\omega^{2}-\omega_{0}^{2}\right)^{2}=\left(\frac{R \omega}{L}\right)^{2} \tag{12.4.10}
\end{equation*}
$$

Taking square roots yields two solutions, which we analyze separately.
case 1: Taking the positive root leads to

$$
\begin{equation*}
\omega_{+}^{2}-\omega_{0}^{2}=+\frac{R \omega_{+}}{L} \tag{12.4.11}
\end{equation*}
$$

Solving the quadratic equation, the solution with positive root is

$$
\begin{equation*}
\omega_{+}=\frac{R}{2 L}+\sqrt{\left(\frac{R}{4 L}\right)^{2}+\omega_{0}^{2}} \tag{12.4.12}
\end{equation*}
$$

Case 2: Taking the negative root of Eq. (12.4.10) gives

$$
\begin{equation*}
\omega_{-}^{2}-\omega_{0}^{2}=-\frac{R \omega_{-}}{L} \tag{12.4.13}
\end{equation*}
$$

The solution to this quadratic equation with positive root is

$$
\begin{equation*}
\omega_{-}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{4 L}\right)^{2}+\omega_{0}^{2}} \tag{12.4.14}
\end{equation*}
$$

The width at half maximum is then

$$
\begin{equation*}
\Delta \omega=\omega_{+}-\omega_{-}=\frac{R}{L} \tag{12.4.15}
\end{equation*}
$$

Once the width $\Delta \omega$ is known, the quality factor Q (not to be confused with charge) can be obtained as

$$
\begin{equation*}
Q=\frac{\omega_{0}}{\Delta \omega}=\frac{\omega_{0} L}{R} \tag{12.4.16}
\end{equation*}
$$

Comparing the above equation with Eq. (11.8.17), we see that both expressions agree with each other in the limit where the resistance is small, and $\omega^{\prime}=\sqrt{\omega_{0}^{2}-(R / 2 L)^{2}} \approx \omega_{0}$.

12.5 Transformer

A transformer is a device used to increase or decrease the AC voltage in a circuit. A typical device consists of two coils of wire, a primary and a secondary, wound around an iron core, as illustrated in Figure 12.5.1. The primary coil, with N_{1} turns, is connected to alternating voltage source $V_{1}(t)$. The secondary coil has N_{2} turns and is connected to a "load resistance" R_{2}. The way transformers operate is based on the principle that an
alternating current in the primary coil will induce an alternating emf on the secondary coil due to their mutual inductance.

Figure 12.5.1 A transformer

In the primary circuit, neglecting the small resistance in the coil, Faraday's law of induction implies

$$
\begin{equation*}
V_{1}=-N_{1} \frac{d \Phi_{B}}{d t} \tag{12.5.1}
\end{equation*}
$$

where Φ_{B} is the magnetic flux through one turn of the primary coil. The iron core, which extends from the primary to the secondary coils, serves to increase the magnetic field produced by the current in the primary coil and ensure that nearly all the magnetic flux through the primary coil also passes through each turn of the secondary coil. Thus, the voltage (or induced emf) across the secondary coil is

$$
\begin{equation*}
V_{2}=-N_{2} \frac{d \Phi_{B}}{d t} \tag{12.5.2}
\end{equation*}
$$

In the case of an ideal transformer, power loss due to Joule heating can be ignored, so that the power supplied by the primary coil is completely transferred to the secondary coil:

$$
\begin{equation*}
I_{1} V_{1}=I_{2} V_{2} \tag{12.5.3}
\end{equation*}
$$

In addition, no magnetic flux leaks out from the iron core, and the flux Φ_{B} through each turn is the same in both the primary and the secondary coils. Combining the two expressions, we are lead to the transformer equation:

$$
\begin{equation*}
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}} \tag{12.5.4}
\end{equation*}
$$

By combining the two equations above, the transformation of currents in the two coils may be obtained as:

$$
\begin{equation*}
I_{1}=\left(\frac{V_{2}}{V_{1}}\right) I_{2}=\left(\frac{N_{2}}{N_{1}}\right) I_{2} \tag{12.5.5}
\end{equation*}
$$

Thus, we see that the ratio of the output voltage to the input voltage is determined by the turn ratio N_{2} / N_{1}. If $N_{2}>N_{1}$, then $V_{2}>V_{1}$, which means that the output voltage in the second coil is greater than the input voltage in the primary coil. A transformer with $N_{2}>N_{1}$ is called a step-up transformer. On the other hand, if $N_{2}<N_{1}$, then $V_{2}<V_{1}$, and the output voltage is smaller than the input. A transformer with $N_{2}<N_{1}$ is called a stepdown transformer.

12.6 Parallel RLC Circuit

Consider the parallel $R L C$ circuit illustrated in Figure 12.6.1. The AC voltage source is $V(t)=V_{0} \sin \omega t$.

Figure 12.6.1 Parallel RLC circuit.
Unlike the series $R L C$ circuit, the instantaneous voltages across all three circuit elements R, L, and C are the same, and each voltage is in phase with the current through the resistor. However, the currents through each element will be different.

In analyzing this circuit, we make use of the results discussed in Sections 12.2-12.4. The current in the resistor is

$$
\begin{equation*}
I_{R}(t)=\frac{V(t)}{R}=\frac{V_{0}}{R} \sin \omega t=I_{R 0} \sin \omega t \tag{12.6.1}
\end{equation*}
$$

where $I_{R 0}=V_{0} / R$. The voltage across the inductor is

$$
\begin{equation*}
V_{L}(t)=V(t)=V_{0} \sin \omega t=L \frac{d I_{L}}{d t} \tag{12.6.2}
\end{equation*}
$$

which gives

$$
\begin{equation*}
I_{L}(t)=\int_{0}^{t} \frac{V_{0}}{L} \sin \omega t^{\prime} d t^{\prime}=-\frac{V_{0}}{\omega L} \cos \omega t=\frac{V_{0}}{X_{L}} \sin \left(\omega t-\frac{\pi}{2}\right)=I_{L 0} \sin \left(\omega t-\frac{\pi}{2}\right) \tag{12.6.3}
\end{equation*}
$$

where $I_{L 0}=V_{0} / X_{L}$ and $X_{L}=\omega L$ is the inductive reactance.

Similarly, the voltage across the capacitor is $V_{C}(t)=V_{0} \sin \omega t=Q(t) / C$, which implies

$$
\begin{equation*}
I_{C}(t)=\frac{d Q}{d t}=\omega C V_{0} \cos \omega t=\frac{V_{0}}{X_{C}} \sin \left(\omega t+\frac{\pi}{2}\right)=I_{C 0} \sin \left(\omega t+\frac{\pi}{2}\right) \tag{12.6.4}
\end{equation*}
$$

where $I_{C 0}=V_{0} / X_{C}$ and $X_{C}=1 / \omega C$ is the capacitive reactance.

Using Kirchhoff's junction rule, the total current in the circuit is simply the sum of all three currents.

$$
\begin{align*}
I(t) & =I_{R}(t)+I_{L}(t)+I_{C}(t) \\
& =I_{R 0} \sin \omega t+I_{L 0} \sin \left(\omega t-\frac{\pi}{2}\right)+I_{C 0} \sin \left(\omega t+\frac{\pi}{2}\right) \tag{12.6.5}
\end{align*}
$$

The currents can be represented with the phasor diagram shown in Figure 12.6.2.

Figure 12.6.2 Phasor diagram for the parallel $R L C$ circuit
From the phasor diagram, we see that

$$
\begin{equation*}
\vec{I}_{0}=\vec{I}_{R 0}+\vec{I}_{L 0}+\vec{I}_{C 0} \tag{12.6.6}
\end{equation*}
$$

and the maximum amplitude of the total current, I_{0}, can be obtained as

$$
\begin{align*}
I_{0} & =\left|\vec{I}_{0}\right|=\left|\vec{I}_{R 0}+\vec{I}_{L 0}+\vec{I}_{C 0}\right|=\sqrt{I_{R 0}^{2}+\left(I_{C 0}-I_{L 0}\right)^{2}} \\
& =V_{0} \sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}=V_{0} \sqrt{\frac{1}{R^{2}}+\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)^{2}} \tag{12.6.7}
\end{align*}
$$

Note however, since $I_{R}(t), I_{L}(t)$ and $I_{C}(t)$ are not in phase with one another, I_{0} is not equal to the sum of the maximum amplitudes of the three currents:

$$
\begin{equation*}
I_{0} \neq I_{R 0}+I_{L 0}+I_{C 0} \tag{12.6.8}
\end{equation*}
$$

With $I_{0}=V_{0} / Z$, the (inverse) impedance of the circuit is given by

$$
\begin{equation*}
\frac{1}{Z}=\sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}=\sqrt{\frac{1}{R^{2}}+\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)^{2}} \tag{12.6.9}
\end{equation*}
$$

The relationship between Z, R, X_{L} and X_{C} is shown in Figure 12.6.3.

Figure 12.6.3 Relationship between Z, R, X_{L} and X_{C} in a parallel $R L C$ circuit.
From the figure or the phasor diagram shown in Figure 12.6.2, we see that the phase can be obtained as

$$
\begin{equation*}
\tan \phi=\left(\frac{I_{C 0}-I_{L 0}}{I_{R 0}}\right)=\frac{\frac{V_{0}}{X_{C}}-\frac{V_{0}}{X_{L}}}{\frac{V_{0}}{R}}=R\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)=R\left(\omega C-\frac{1}{\omega L}\right) \tag{12.6.10}
\end{equation*}
$$

The resonance condition for the parallel $R L C$ circuit is given by $\phi=0$, which implies

$$
\begin{equation*}
\frac{1}{X_{C}}=\frac{1}{X_{L}} \tag{12.6.11}
\end{equation*}
$$

The resonant frequency is

$$
\begin{equation*}
\omega_{0}=\frac{1}{\sqrt{L C}} \tag{12.6.12}
\end{equation*}
$$

which is the same as for the series $R L C$ circuit. From Eq. (12.6.9), we readily see that $1 / Z$ is minimum (or Z is maximum) at resonance. The current in the inductor exactly
cancels out the current in the capacitor, so that the total current in the circuit reaches a minimum, and is equal to the current in the resistor:

$$
\begin{equation*}
I_{0}=\frac{V_{0}}{R} \tag{12.6.13}
\end{equation*}
$$

As in the series RLC circuit, power is dissipated only through the resistor. The average power is

$$
\begin{equation*}
\langle P(t)\rangle=\left\langle I_{R}(t) V(t)\right\rangle=\left\langle I_{R}^{2}(t) R\right\rangle=\frac{V_{0}^{2}}{R}\left\langle\sin ^{2} \omega t\right\rangle=\frac{V_{0}^{2}}{2 R}=\frac{V_{0}^{2}}{2 Z}\left(\frac{Z}{R}\right) \tag{12.6.14}
\end{equation*}
$$

Thus, the power factor in this case is

$$
\begin{equation*}
\text { power factor }=\frac{\langle P(t)\rangle}{V_{0}^{2} / 2 Z}=\frac{Z}{R}=\frac{1}{\sqrt{1+\left(R \omega C-\frac{R}{\omega L}\right)^{2}}}=\cos \phi \tag{12.6.15}
\end{equation*}
$$

12.7 Summary

- In an AC circuit with a sinusoidal voltage source $V(t)=V_{0} \sin \omega t$, the current is given by $I(t)=I_{0} \sin (\omega t-\phi)$, where I_{0} is the amplitude and ϕ is the phase constant. For simple circuit with only one element (a resistor, a capacitor or an inductor) connected to the voltage source, the results are as follows:

Circuit Elements	Resistance /Reactance	Current Amplitude	Phase angle ϕ
R	R	$I_{R 0}=\frac{V_{0}}{R}$	0
$\bullet \bullet$	$X_{L}=\omega L$	$I_{L 0}=\frac{V_{0}}{X_{L}}$	$\pi / 2$ current lags voltage by 90°
\bullet	$X_{C}=\frac{1}{\omega C}$	$I_{C 0}=\frac{V_{0}}{X_{C}}$	$-\pi / 2$ current leads voltage by 90°

where X_{L} is the inductive reactance and X_{C} is the capacitive reactance.

- For circuits which have more than one circuit element connected in series, the results are

Circuit Elements	Impedance Z	Current Amplitude	Phase angle ϕ	
$\cdot \sim_{\mathbb{W}}^{R} \quad \stackrel{L}{L}$	$\sqrt{R^{2}+X_{L}^{2}}$	$I_{0}=\frac{V_{0}}{\sqrt{R^{2}+X_{L}^{2}}}$	$0<\phi<\frac{\pi}{2}$	
$\cdot \stackrel{W}{W}^{R} \\|^{C}$	$\sqrt{R^{2}+X_{C}^{2}}$	$I_{0}=\frac{V_{0}}{\sqrt{R^{2}+X_{C}^{2}}}$	$-\frac{\pi}{2}<\phi<0$	
$\cdot{\underset{W}{M}}_{L}^{L} \quad \\|^{C} .$	$\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	$I_{0}=\frac{V_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$	$\begin{aligned} & \phi>0 \text { if } X_{L}>X_{C} \\ & \phi<0 \text { if } X_{L}<X_{C} \end{aligned}$	

where Z is the impedance Z of the circuit. For a series $R L C$ circuit, we have

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

The phase angle between the voltage and the current in an AC circuit is

$$
\phi=\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)
$$

- In the parallel RLC circuit, the impedance is given by

$$
\frac{1}{Z}=\sqrt{\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right)^{2}}=\sqrt{\frac{1}{R^{2}}+\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)^{2}}
$$

and the phase is

$$
\phi=\tan ^{-1}\left[R\left(\frac{1}{X_{C}}-\frac{1}{X_{L}}\right)\right]=\tan ^{-1}\left[R\left(\omega C-\frac{1}{\omega L}\right)\right]
$$

- The rms (root mean square) voltage and current in an AC circuit are given by

$$
V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}, \quad I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}}
$$

- The average power of an AC circuit is

$$
\langle P(t)\rangle=I_{\mathrm{rms}} V_{\mathrm{rms}} \cos \phi
$$

where $\cos \phi$ is known as the power factor.

- The resonant frequency ω_{0} is

$$
\omega_{0}=\frac{1}{\sqrt{L C}}
$$

At resonance, the current in the series $R L C$ circuit reaches the maximum, but the current in the parallel RLC circuit is at a minimum.

- The transformer equation is

$$
\frac{V_{2}}{V_{1}}=\frac{N_{2}}{N_{1}}
$$

where V_{1} is the voltage source in the primary coil with N_{1} turns, and V_{2} is the output voltage in the secondary coil with N_{2} turns. A transformer with $N_{2}>N_{1}$ is called a step-up transformer, and a transformer with $N_{2}<N_{1}$ is called a step-down transformer.

12.8 Problem-Solving Tips

In this chapter, we have seen how phasors provide a powerful tool for analyzing the AC circuits. Below are some important tips:

1. Keep in mind the phase relationships for simple circuits
(1) For a resistor, the voltage and the phase are always in phase.
(2) For an inductor, the current lags the voltage by 90°.
(3) For a capacitor, the current leads to voltage by 90°.
2. When circuit elements are connected in series, the instantaneous current is the same for all elements, and the instantaneous voltages across the elements are out of phase. On the other hand, when circuit elements are connected in parallel, the instantaneous voltage is the same for all elements, and the instantaneous currents across the elements are out of phase.
3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the voltage drop across all the circuit elements involved should be represented with phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit is shown for both the inductive case $X_{L}>X_{C}$ and the capacitive case $X_{L}<X_{C}$.

Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) $X_{L}>X_{C}$ and (b) $X_{L}<X_{C}$ 。

From Figure 12.8.1(a), we see that $V_{L 0}>V_{C 0}$ in the inductive case and \vec{V}_{0} leads \vec{I}_{0} by a phase ϕ. On the other hand, in the capacitive case shown in Figure 12.8.1(b), $V_{C 0}>V_{L 0}$ and \vec{I}_{0} leads \vec{V}_{0} by a phase ϕ.
4. When $V_{L 0}=V_{C 0}$, or $\phi=0$, the circuit is at resonance. The corresponding resonant frequency is $\omega_{0}=1 / \sqrt{L C}$, and the power delivered to the resistor is a maximum.
5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the currents across all the circuit elements involved should be represented with phasors. In Figure 12.8.2 the phasor diagram for a parallel $R L C$ circuit is shown for both the inductive case $X_{L}>X_{C}$ and the capacitive case $X_{L}<X_{C}$.

Figure 12.8.2 Phasor diagram for the parallel $R L C$ circuit for (a) $X_{L}>X_{C}$ and (b) $X_{L}<X_{C}$ 。

From Figure 12.8.2(a), we see that $I_{L 0}>I_{C 0}$ in the inductive case and \vec{V}_{0} leads \vec{I}_{0} by a phase ϕ. On the other hand, in the capacitive case shown in Figure 12.8.2(b), $I_{C 0}>I_{L 0}$ and \vec{I}_{0} leads \vec{V}_{0} by a phase ϕ.

12.9 Solved Problems

12.9.1 RLC Series Circuit

A series RLC circuit with $L=160 \mathrm{mH}, C=100 \mu \mathrm{~F}$, and $R=40.0 \Omega$ is connected to a sinusoidal voltage $V(t)=(40.0 \mathrm{~V}) \sin \omega t$, with $\omega=200 \mathrm{rad} / \mathrm{s}$.
(a) What is the impedance of the circuit?
(b) Let the current at any instant in the circuit be $I(t)=I_{0} \sin (\omega t-\phi)$. Find I_{0}.
(c) What is the phase ϕ ?

Solution:

(a) The impedance of a series $R L C$ circuit is given by

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \tag{12.9.1}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{L}=\omega L \tag{12.9.2}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{C}=\frac{1}{\omega C} \tag{12.9.3}
\end{equation*}
$$

are the inductive reactance and the capacitive reactance, respectively. Since the general expression of the voltage source is $V(t)=V_{0} \sin (\omega t)$, where V_{0} is the maximum output voltage and ω is the angular frequency, we have $V_{0}=40 \mathrm{~V}$ and $\omega=200 \mathrm{rad} / \mathrm{s}$. Thus, the impedance Z becomes

$$
\begin{align*}
Z & =\sqrt{(40.0 \Omega)^{2}+\left((200 \mathrm{rad} / \mathrm{s})(0.160 \mathrm{H})-\frac{1}{(200 \mathrm{rad} / \mathrm{s})\left(100 \times 10^{-6} \mathrm{~F}\right)}\right)^{2}} \tag{12.9.4}\\
& =43.9 \Omega
\end{align*}
$$

(b) With $V_{0}=40.0 \mathrm{~V}$, the amplitude of the current is given by

$$
\begin{equation*}
I_{0}=\frac{V_{0}}{Z}=\frac{40.0 \mathrm{~V}}{43.9 \Omega}=0.911 \mathrm{~A} \tag{12.9.5}
\end{equation*}
$$

(c) The phase between the current and the voltage is determined by

$$
\begin{align*}
\phi & =\tan ^{-1}\left(\frac{X_{L}-X_{C}}{R}\right)=\tan ^{-1}\left(\frac{\omega L-\frac{1}{\omega C}}{R}\right) \\
& =\tan ^{-1}\left(\frac{(200 \mathrm{rad} / \mathrm{s})(0.160 \mathrm{H})-\frac{1}{(200 \mathrm{rad} / \mathrm{s})\left(100 \times 10^{-6} \mathrm{~F}\right)}}{40.0 \Omega}\right)=-24.2^{\circ} \tag{12.9.6}
\end{align*}
$$

12.9.2 RLC Series Circuit

Suppose an AC generator with $V(t)=(150 \mathrm{~V}) \sin (100 t)$ is connected to a series $R L C$ circuit with $R=40.0 \Omega, L=80.0 \mathrm{mH}$, and $C=50.0 \mu \mathrm{~F}$, as shown in Figure 12.9.1.

Figure 12.9.1 $R L C$ series circuit
(a) Calculate $V_{R 0}, V_{L 0}$ and $V_{C 0}$, the maximum of the voltage drops across each circuit element.
(b) Calculate the maximum potential difference across the inductor and the capacitor between points b and d shown in Figure 12.9.1.

Solutions:

(a) The inductive reactance, capacitive reactance and the impedance of the circuit are given by

$$
\begin{align*}
& X_{C}=\frac{1}{\omega C}=\frac{1}{(100 \mathrm{rad} / \mathrm{s})\left(50.0 \times 10^{-6} \mathrm{~F}\right)}=200 \Omega \tag{12.9.7}\\
& X_{L}=\omega L=(100 \mathrm{rad} / \mathrm{s})\left(80.0 \times 10^{-3} \mathrm{H}\right)=8.00 \Omega \tag{12.9.8}
\end{align*}
$$

and

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{(40.0 \Omega)^{2}+(8.00 \Omega-200 \Omega)^{2}}=196 \Omega \tag{12.9.9}
\end{equation*}
$$

respectively. Therefore, the corresponding maximum current amplitude is

$$
\begin{equation*}
I_{0}=\frac{V_{0}}{Z}=\frac{150 \mathrm{~V}}{196 \Omega}=0.765 \mathrm{~A} \tag{12.9.10}
\end{equation*}
$$

The maximum voltage across the resistance would be just the product of maximum current and the resistance:

$$
\begin{equation*}
V_{R 0}=I_{0} R=(0.765 \mathrm{~A})(40.0 \Omega)=30.6 \mathrm{~V} \tag{12.9.11}
\end{equation*}
$$

Similarly, the maximum voltage across the inductor is

$$
\begin{equation*}
V_{L 0}=I_{0} X_{L}=(0.765 \mathrm{~A})(8.00 \Omega)=6.12 \mathrm{~V} \tag{12.9.12}
\end{equation*}
$$

and the maximum voltage across the capacitor is

$$
\begin{equation*}
V_{C 0}=I_{0} X_{C}=(0.765 \mathrm{~A})(200 \Omega)=153 \mathrm{~V} \tag{12.9.13}
\end{equation*}
$$

Note that the maximum input voltage V_{0} is related to $V_{R 0}, V_{L 0}$ and $V_{C 0}$ by

$$
\begin{equation*}
V_{0}=\sqrt{V_{R 0}^{2}+\left(V_{L 0}-V_{C 0}\right)^{2}} \tag{12.9.14}
\end{equation*}
$$

(b) From b to d, the maximum voltage would be the difference between $V_{L 0}$ and $V_{C 0}$:

$$
\begin{equation*}
\left|V_{b d}\right|=\left|\vec{V}_{L 0}+\vec{V}_{C 0}\right|=\left|V_{L 0}-V_{C 0}\right|=|6.12 \mathrm{~V}-153 \mathrm{~V}|=147 \mathrm{~V} \tag{12.9.15}
\end{equation*}
$$

12.9.3 Resonance

A sinusoidal voltage $V(t)=(200 \mathrm{~V}) \sin \omega t$ is applied to a series $R L C$ circuit with $L=10.0 \mathrm{mH}, C=100 \mathrm{nF}$ and $R=20.0 \Omega$. Find the following quantities:
(a) the resonant frequency,
(b) the amplitude of the current at resonance,
(c) the quality factor Q of the circuit, and
(d) the amplitude of the voltage across the inductor at the resonant frequency.

Solution:

(a) The resonant frequency for the circuit is given by

$$
\begin{equation*}
f=\frac{\omega_{0}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}=\frac{1}{2 \pi} \sqrt{\frac{1}{\left(10.0 \times 10^{-3} \mathrm{H}\right)\left(100 \times 10^{-9} \mathrm{~F}\right)}}=5033 \mathrm{~Hz} \tag{12.9.16}
\end{equation*}
$$

(b) At resonance, the current is

$$
\begin{equation*}
I_{0}=\frac{V_{0}}{R}=\frac{200 \mathrm{~V}}{20.0 \Omega}=10.0 \mathrm{~A} \tag{12.9.17}
\end{equation*}
$$

(c) The quality factor Q of the circuit is given by

$$
\begin{equation*}
Q=\frac{\omega_{0} L}{R}=\frac{2 \pi\left(5033 \mathrm{~s}^{-1}\right)\left(10.0 \times 10^{-3} \mathrm{H}\right)}{(20.0 \Omega)}=15.8 \tag{12.9.18}
\end{equation*}
$$

(d) At resonance, the amplitude of the voltage across the inductor is

$$
\begin{equation*}
V_{L 0}=I_{0} X_{L}=I_{0} \omega_{0} L=(10.0 \mathrm{~A}) 2 \pi\left(5033 \mathrm{~s}^{-1}\right)\left(10.0 \times 10^{-3} \mathrm{H}\right)=3.16 \times 10^{3} \mathrm{~V} \tag{12.9.19}
\end{equation*}
$$

12.9.4 RL High-Pass Filter

An $R L$ high-pass filter (circuit that filters out low-frequency AC currents) can be represented by the circuit in Figure 12.9.2, where R is the internal resistance of the inductor.

Figure 12.9.2 RL filter
(a) Find V_{20} / V_{10}, the ratio of the maximum output voltage V_{20} to the maximum input voltage V_{10}.
(b) Suppose $r=15.0 \Omega, R=10 \Omega$ and $L=250 \mathrm{mH}$. Find the frequency at which $V_{20} / V_{10}=1 / 2$.

Solution:

(a) The impedance for the input circuit is $Z_{1}=\sqrt{(R+r)^{2}+X_{L}^{2}}$ where $X_{L}=\omega L$ and $Z_{2}=\sqrt{R^{2}+X_{L}^{2}}$ for the output circuit. The maximum current is given by

$$
\begin{equation*}
I_{0}=\frac{V_{10}}{Z_{1}}=\frac{V_{0}}{\sqrt{(R+r)^{2}+X_{L}^{2}}} \tag{12.9.20}
\end{equation*}
$$

Similarly, the maximum output voltage is related to the output impedance by

$$
\begin{equation*}
V_{20}=I_{0} Z_{2}=I_{0} \sqrt{R^{2}+X_{L}^{2}} \tag{12.9.21}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\frac{V_{20}}{V_{10}}=\frac{\sqrt{R^{2}+X_{L}^{2}}}{\sqrt{(R+r)^{2}+X_{L}^{2}}} \tag{12.9.22}
\end{equation*}
$$

(b) For $V_{20} / V_{10}=1 / 2$, we have

$$
\begin{equation*}
\frac{R^{2}+X_{L}^{2}}{(R+r)^{2}+X_{L}^{2}}=\frac{1}{4} \Rightarrow X_{L}=\sqrt{\frac{(R+r)^{2}-4 R^{2}}{3}} \tag{12.9.23}
\end{equation*}
$$

Since $X_{L}=\omega L=2 \pi f L$, the frequency which yields this ratio is

$$
\begin{equation*}
f=\frac{X_{L}}{2 \pi L}=\frac{1}{2 \pi(0.250 \mathrm{H})} \sqrt{\frac{(10.0 \Omega+15.0 \Omega)^{2}-4(10.0 \Omega)^{2}}{3}}=5.51 \mathrm{~Hz} \tag{12.9.24}
\end{equation*}
$$

12.9.5 RLC Circuit

Consider the circuit shown in Figure 12.9.3. The sinusoidal voltage source is $V(t)=V_{0} \sin \omega t$. If both switches S_{1} and S_{2} are closed initially, find the following quantities, ignoring the transient effect and assuming that R, L, V_{0} and ω are known:

Figure 12.9.3
(a) the current $I(t)$ as a function of time,
(b) the average power delivered to the circuit,
(c) the current as a function of time a long time after only S_{1} is opened.
(d) the capacitance C if both S_{1} and S_{2} are opened for a long time, with the current and voltage in phase.
(e) the impedance of the circuit when both S_{1} and S_{2} are opened.
(f) the maximum energy stored in the capacitor during oscillations.
(g) the maximum energy stored in the inductor during oscillations.
(h) the phase difference between the current and the voltage if the frequency of $V(t)$ is doubled.
(i) the frequency at which the inductive reactance X_{L} is equal to half the capacitive reactance X_{C}.

Solutions:

(a) When both switches S_{1} and S_{2} are closed, the current goes through only the generator and the resistor, so the total impedance of the circuit is R and the current is

$$
\begin{equation*}
I_{R}(t)=\frac{V_{0}}{R} \sin \omega t \tag{12.9.25}
\end{equation*}
$$

(b) The average power is given by

$$
\begin{equation*}
\langle P(t)\rangle=\left\langle I_{R}(t) V(t)\right\rangle=\frac{V_{0}^{2}}{R}\left\langle\sin ^{2} \omega t\right\rangle=\frac{V_{0}^{2}}{2 R} \tag{12.9.26}
\end{equation*}
$$

(c) If only S_{1} is opened, after a long time the current will pass through the generator, the resistor and the inductor. For this $R L$ circuit, the impedance becomes

$$
\begin{equation*}
Z=\frac{1}{\sqrt{R^{2}+X_{L}^{2}}}=\frac{1}{\sqrt{R^{2}+\omega^{2} L^{2}}} \tag{12.9.27}
\end{equation*}
$$

and the phase angle ϕ is

$$
\begin{equation*}
\phi=\tan ^{-1}\left(\frac{\omega L}{R}\right) \tag{12.9.28}
\end{equation*}
$$

Thus, the current as a function of time is

$$
\begin{equation*}
I(t)=I_{0} \sin (\omega t-\phi)=\frac{V_{0}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin \left(\omega t-\tan ^{-1} \frac{\omega L}{R}\right) \tag{12.9.29}
\end{equation*}
$$

Note that in the limit of vanishing resistance $R=0, \phi=\pi / 2$, and we recover the expected result for a purely inductive circuit.
(d) If both switches are opened, then this would be a driven $R L C$ circuit, with the phase angle ϕ given by

$$
\begin{equation*}
\tan \phi=\frac{X_{L}-X_{C}}{R}=\frac{\omega L-\frac{1}{\omega C}}{R} \tag{12.9.30}
\end{equation*}
$$

If the current and the voltage are in phase, then $\phi=0$, implying $\tan \phi=0$. Let the corresponding angular frequency be ω_{0}; we then obtain

$$
\begin{equation*}
\omega_{0} L=\frac{1}{\omega_{0} C} \tag{12.9.31}
\end{equation*}
$$

and the capacitance is

$$
\begin{equation*}
C=\frac{1}{\omega_{0}^{2} L} \tag{12.9.32}
\end{equation*}
$$

(e) From (d), we see that when both switches are opened, the circuit is at resonance with $X_{L}=X_{C}$. Thus, the impedance of the circuit becomes

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=R \tag{12.9.33}
\end{equation*}
$$

(f) The electric energy stored in the capacitor is

$$
\begin{equation*}
U_{E}=\frac{1}{2} C V_{C}^{2}=\frac{1}{2} C\left(I X_{C}\right)^{2} \tag{12.9.34}
\end{equation*}
$$

It attains maximum when the current is at its maximum I_{0} :

$$
\begin{equation*}
U_{C, \text { max }}=\frac{1}{2} C I_{0}^{2} X_{C}^{2}=\frac{1}{2} C\left(\frac{V_{0}}{R}\right)^{2} \frac{1}{\omega_{0}^{2} C^{2}}=\frac{V_{0}^{2} L}{2 R^{2}} \tag{12.9.35}
\end{equation*}
$$

where we have used $\omega_{0}^{2}=1 / L C$.
(g) The maximum energy stored in the inductor is given by

$$
\begin{equation*}
U_{L, \max }=\frac{1}{2} L I_{0}^{2}=\frac{L V_{0}^{2}}{2 R^{2}} \tag{12.9.36}
\end{equation*}
$$

(h) If the frequency of the voltage source is doubled, i.e., $\omega=2 \omega_{0}=1 / \sqrt{L C}$, then the phase becomes

$$
\begin{equation*}
\phi=\tan ^{-1}\left(\frac{\omega L-1 / \omega C}{R}\right)=\tan ^{-1}\left(\frac{(2 / \sqrt{L C}) L-(\sqrt{L C} / 2 C)}{R}\right)=\tan ^{-1}\left(\frac{3}{2 R} \sqrt{\frac{L}{C}}\right) \tag{12.9.37}
\end{equation*}
$$

(i) If the inductive reactance is one-half the capacitive reactance,

$$
\begin{equation*}
X_{L}=\frac{1}{2} X_{C} \quad \Rightarrow \quad \omega L=\frac{1}{2}\left(\frac{1}{\omega C}\right) \tag{12.9.38}
\end{equation*}
$$

then

$$
\begin{equation*}
\omega=\frac{1}{\sqrt{2 L C}}=\frac{\omega_{0}}{\sqrt{2}} \tag{12.9.39}
\end{equation*}
$$

12.9.6 RL Filter

The circuit shown in Figure 12.9.4 represents an $R L$ filter.

Figure 12.9.4

Let the inductance be $L=400 \mathrm{mH}$, and the input voltage $V_{\text {in }}=(20.0 \mathrm{~V}) \sin \omega t$, where $\omega=200 \mathrm{rad} / \mathrm{s}$.
(a) What is the value of R such that the output voltage lags behind the input voltage by 30.0° ?
(b) Find the ratio of the amplitude of the output and the input voltages. What type of filter is this circuit, high-pass or low-pass?
(c) If the positions of the resistor and the inductor are switched, would the circuit be a high-pass or a low-pass filter?

Solutions:

(a) The phase relationship between V_{L} and V_{R} is given by

$$
\begin{equation*}
\tan \phi=\frac{V_{L}}{V_{R}}=\frac{I X_{L}}{I X_{R}}=\frac{\omega L}{R} \tag{12.9.40}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
R=\frac{\omega L}{\tan \phi}=\frac{(200 \mathrm{rad} / \mathrm{s})(0.400 \mathrm{H})}{\tan 30.0^{\circ}}=139 \Omega \tag{12.9.41}
\end{equation*}
$$

(b) The ratio is given by

$$
\begin{equation*}
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{V_{R}}{V_{\text {in }}}=\frac{R}{\sqrt{R^{2}+X_{L}^{2}}}=\cos \phi=\cos 30.0^{\circ}=0.866 . \tag{12.9.42}
\end{equation*}
$$

The circuit is a low-pass filter, since the ratio $V_{\text {out }} / V_{\text {in }}$ decreases with increasing ω.
(c) In this case, the circuit diagram is

Figure 12.9.5 $R L$ high-pass filter
The ratio of the output voltage to the input voltage would be

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{V_{L}}{V_{\text {in }}}=\frac{X_{L}}{\sqrt{R^{2}+X_{L}^{2}}}=\frac{\omega^{2} L^{2}}{\sqrt{R^{2}+\omega^{2} L^{2}}}=\left[1+\left(\frac{R}{\omega L}\right)^{2}\right]^{-1 / 2}
$$

The circuit is a high-pass filter, since the ratio $V_{\text {out }} / V_{\text {in }}$ approaches one in the large- ω limit.

12.10 Conceptual Questions

1. Consider a purely capacitive circuit (a capacitor connected to an AC source).
(a) How does the capacitive reactance change if the driving frequency is doubled? halved?
(b) Are there any times when the capacitor is supplying power to the AC source?
2. If the applied voltage leads the current in a series $R L C$ circuit, is the frequency above or below resonance?
3. Consider the phasor diagram shown in Figure 12.10.1 for an $R L C$ circuit.

(a) Is the driving frequency above or below the resonant frequency?
(b) Draw the phasor \vec{V}_{0} associated with the amplitude of the applied voltage.
(c) Give an estimate of the phase ϕ between the applied AC voltage and the current.
4. How does the power factor in an $R L C$ circuit change with resistance R, inductance L and capacitance C ?
5. Can a battery be used as the primary voltage source in a transformer?
6. If the power factor in an $R L C$ circuit is $\cos \phi=1 / 2$, can you tell whether the current leading or lagging the voltage? Explain.

12.11 Additional Problems

12.11.1 Reactance of a Capacitor and an Inductor

(a) A $C=0.5-\mu \mathrm{F}$ capacitor is connected, as shown in Figure 12.11.1(a), to an AC generator with $V_{0}=300 \mathrm{~V}$. What is the amplitude I_{0} of the resulting alternating current if the angular frequency ω is (i) $100 \mathrm{rad} / \mathrm{s}$, and (ii) $1000 \mathrm{rad} / \mathrm{s}$?

Figure 12.11.1 (a) A purely capacitive circuit, and (b) a purely inductive circuit.
(b) A $45-\mathrm{mH}$ inductor is connected, as shown in Figure 12.10.1(b), to an AC generator with $V_{0}=300 \mathrm{~V}$. The inductor has a reactance $X_{L}=1300 \Omega$. What must be
(i) the applied angular frequency ω and
(ii) the applied frequency f for this to be true?
(iii) What is the amplitude I_{0} of the resulting alternating current?
(c) At what frequency f would our $0.5-\mu \mathrm{F}$ capacitor and our $45-\mathrm{mH}$ inductor have the same reactance? What would this reactance be? How would this frequency compare to the natural resonant frequency of free oscillations if the components were connected as an $L C$ oscillator with zero resistance?

12.11.2 Driven RLC Circuit Near Resonance

The circuit shown in Figure 12.11.2 contains an inductor L, a capacitor C, and a resistor R in series with an AC generator which provides a source of sinusoidally varying emf $V(t)=V_{0} \sin \omega t$.

Figure 12.11.2
This emf drives current $I(t)=I_{0} \sin (\omega t-\phi)$ through the circuit at angular frequency ω.
(a) At what angular frequency ω will the circuit resonate with maximum response, as measured by the amplitude I_{0} of the current in the circuit? What is the value of the maximum current amplitude $I_{\max }$?
(b) What is the value of the phase angle ϕ between $V(t)$ and $I(t)$ at this resonant frequency?
(c) Suppose the frequency ω is increased from the resonance value until the amplitude I_{0} of the current decreases from $I_{\max }$ to $I_{\max } / \sqrt{2}$. Now what is the phase difference ϕ between the emf and the current? Does the current lead or lag the emf?

12.11.3 RC Circuit

A series $R C$ circuit with $R=4.0 \times 10^{3} \Omega$ and $C=0.40 \mu \mathrm{~F}$ is connected to an AC voltage source $V(t)=(100 \mathrm{~V}) \sin \omega t$, with $\omega=200 \mathrm{rad} / \mathrm{s}$.
(a) What is the rms current in the circuit?
(b) What is the phase between the voltage and the current?
(c) Find the power dissipated in the circuit.
(d) Find the voltage drop both across the resistor and the capacitor.

12.11.4 Black Box

An AC voltage source is connected to a "black box" which contains a circuit, as shown in Figure 12.11.3.

Figure 12.11.3 A "black box" connected to an AC voltage source.
The elements in the circuit and their arrangement, however, are unknown. Measurements outside the black box provide the following information:

$$
\begin{aligned}
& V(t)=(80 \mathrm{~V}) \sin \omega t \\
& I(t)=(1.6 \mathrm{~A}) \sin \left(\omega t+45^{\circ}\right)
\end{aligned}
$$

(a) Does the current lead or lag the voltage?
(b) Is the circuit in the black box largely capacitive or inductive?
(c) Is the circuit in the black box at resonance?
(d) What is the power factor?
(e) Does the box contain a resistor? A capacitor? An inductor?
(f) Compute the average power delivered to the black box by the AC source.

12.11.5 Parallel RL Circuit

Consider the parallel $R L$ circuit shown in Figure 12.11.4.

Figure 12.11.4 Parallel $R L$ circuit
The AC voltage source is $V(t)=V_{0} \sin \omega t$.
(a) Find the current across the resistor.
(b) Find the current across the inductor.
(c) What is the magnitude of the total current?
(d) Find the impedance of the circuit.
(e) What is the phase angle between the current and the voltage?

12.11.6 LC Circuit

Suppose at $t=0$ the capacitor in the $L C$ circuit is fully charged to Q_{0}. At a later time $t=T / 6$, where T is the period of the $L C$ oscillation, find the ratio of each of the following quantities to its maximum value:
(a) charge on the capacitor,
(b) energy stored in the capacitor,
(c) current in the inductor, and
(d) energy in the inductor.

12.11.7 Parallel RC Circuit

Consider the parallel $R C$ circuit shown in Figure 12.11.5.

Figure 12.11.5 Parallel $R C$ circuit
The AC voltage source is $V(t)=V_{0} \sin \omega t$.
(a) Find the current across the resistor.
(b) Find the current across the capacitor.
(c) What is the magnitude of the total current?
(d) Find the impedance of the circuit.
(e) What is the phase angle between the current and the voltage?

12.11.8 Power Dissipation

A series $R L C$ circuit with $R=10.0 \Omega, L=400 \mathrm{mH}$ and $C=2.0 \mu \mathrm{~F}$ is connected to an AC voltage source which has a maximum amplitude $V_{0}=100 \mathrm{~V}$.
(a) What is the resonant frequency ω_{0} ?
(b) Find the rms current at resonance.
(c) Let the driving frequency be $\omega=4000 \mathrm{rad} / \mathrm{s}$. Compute X_{C}, X_{L}, Z and ϕ.

12.11.9 FM Antenna

An FM antenna circuit (shown in Figure 12.11.6) has an inductance $L=10^{-6} \mathrm{H}$, a capacitance $C=10^{-12} \mathrm{~F}$ and a resistance $R=100 \Omega$. A radio signal induces a sinusoidally alternating emf in the antenna with an amplitude of $10^{-5} \mathrm{~V}$.

Figure 12.11.6
(a) For what angular frequency ω_{0} (radians/sec) of the incoming waves will the circuit be "in tune"-- that is, for what ω_{0} will the current in the circuit be a maximum.
(b) What is the quality factor Q of the resonance?
(c) Assuming that the incoming wave is "in tune," what will be the amplitude of the current in the circuit at this "in tune" frequency.
(d) What is the amplitude of the potential difference across the capacitor at this "in tune" frequency?

12.11.10 Driven RLC Circuit

Suppose you want a series $R L C$ circuit to tune to your favorite FM radio station that broadcasts at a frequency of 89.7 MHz . You would like to avoid the obnoxious station that broadcasts at 89.5 MHz . In order to achieve this, for a given input voltage signal from your antenna, you want the width of your resonance to be narrow enough at 89.7 MHz such that the current flowing in your circuit will be 10^{-2} times less at 89.5 MHz than at 89.7 MHz . You cannot avoid having a resistance of $R=0.1 \Omega$, and practical considerations also dictate that you use the minimum L possible.
(a) In terms of your circuit parameters, L, R and C, what is the amplitude of your current in your circuit as a function of the angular frequency of the input signal?
(b) What is the angular frequency of the input signal at the desired resonance?
(c) What values of L and C must you use?
(d) What is the quality factor for this resonance?
(e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor with the driving signal amplitude is the quality of the resonance.
(f) Show that at resonance the ratio of the amplitude of the voltage across the capacitor with the driving signal amplitude is the quality of the resonance.
(g) What is the time averaged power at resonance that the signal delivers to the circuit?
(h) What is the phase shift for the input signal at 89.5 MHz ?
(i) What is the time averaged power for the input signal at 89.5 MHz ?
(j) Is the circuit capacitive or inductive at 89.5 MHz ?

MIT OpenCourseWare
http://ocw.mit.edu

8.02SC Physics II: Electricity and Magnetism

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ These notes are excerpted "Introduction to Electricity and Magnetism" by Sen-Ben Liao, Peter Dourmashkin, and John Belcher, Copyright 2004, ISBN 0-536-81207-1.

