PROBLEM SET 10; 802x; SPRING 2005

1) The differential equation governing an RLC circuit is:
$-L d i / d t-R i+q / C=0$. Using $i=-d q / d t$, we have, $L^{2} q / d t^{2}+R d q / d t+q / C=0$.

The differential equation governing a mass on a spring is (with velocity proportional viscous damping): ${m d^{2}}^{2} / \mathrm{dt}^{2}+\mathrm{bdx} / \mathrm{dt}+\mathrm{Kx}=0$. Here the mass is m, K is the spring constant and b is the coefficient of proportionality between velocity and the viscous retarding force.

Thus: M and L play the same roles; b and R play the same roles; and, K plays the same role as $1 / \mathrm{C}$.
Mv is the momentum that will persist unless changed by a force, and Li is the flux in an inductor that will persist unless changed by an external agent. The kinetic energy stored in motion is $(1 / 2) \mathrm{mv}^{2}$, while energy is stored in the inductor as $(1 / 2) \mathrm{Li}^{2}$. The resistor is an agent for energy loss at the rate $\mathrm{i}^{2} \mathrm{R}$. Energy is lost to viscocity at the rate $b v^{2}$. Energy is stored in a capacitor as $(1 / 2) q^{2} / C$ and energy is stored in the spring as $(1 / 2) \mathrm{Kx}^{2}$.
2) The self-inductance of the circuit causes the current to persist until the voltage developed across the gap acting as a capacitor causes it to stop. Now this gap usually has a very small capacitance and the current, which we have assumed to be large, can charge the gap to a very large voltage. Thus the spark develops when the air brakes down. The energy for the spark comes from the energy stored in the self-inductance of the circuit, $(1 / 2) \mathrm{Li}^{2}$.

The equilibrium current is $\mathrm{i}=\mathrm{V} / \mathrm{R}=100 / 10=10 \mathrm{amps}$. The energy stored in the inductor is $\left(1 / 2 \mathrm{Li}^{2}=\right.$ $(1 / 2)(1 / 1000)(100)=1 / 20$ joule.
3) a. Compare figure 30.18 and fig 30.6 b . Note that points a and b are reversed. Thus, according to equation $30.8, \mathrm{dI} / \mathrm{dt}=(\mathrm{Vb}-\mathrm{Va}) / \mathrm{L}=-1.04 \mathrm{~V} / 0.260 \mathrm{H}=-4 \mathrm{~A} / \mathrm{s}$. Thus, the current is decreasing.
b. From a. we know that $\mathrm{di}=(-4 \mathrm{~A} / \mathrm{s}) \mathrm{dt}$. After integrating both sides of the expression with respect to t , we obtain $\Delta \mathrm{I}=(-4 \mathrm{~A} / \mathrm{s}) \Delta \mathrm{t}$ and so $\mathrm{I}=(12.0 \mathrm{~A})-4 \mathrm{~A} / \mathrm{s} * 2 \mathrm{~s}=4 \mathrm{~A}$.
4) a. $U=P * t=(200 \mathrm{~W})(24 \mathrm{~h} /$ dayx $3600 \mathrm{~s} / \mathrm{h})=1.73 \times 10^{7} \mathrm{~J}$.
b. $\mathrm{U}=1 / 2 \mathrm{LI}^{2}$ and therefore $\mathrm{L}=2 \mathrm{U} / \mathrm{I}^{2}=2\left(1.73 \times 10^{7} \mathrm{~J}\right) /\left(80 \mathrm{~A}^{2}\right)=5406 \mathrm{H}$.
5) When switch 1 is closed and switch 2 is open, the loop rule gives $L d I / d t+I R=0$ and therefore $\mathrm{dI} / \mathrm{dt}=-\mathrm{I} \mathrm{R} / \mathrm{L}$. Integrating from I_{0} to I on the LHS and 0 to t on the RHS gives $\ln \left(\mathrm{I} / \mathrm{I}_{0}\right)=-\mathrm{R} / \mathrm{L} t$ and therefore $\mathrm{I}(\mathrm{t})=\mathrm{I}_{0} \exp (-\mathrm{t} /(\mathrm{L} / \mathrm{R}))$

