Review for 8.02x Quiz \#3

Apr 82005

Experiment EB

(2)
(1)

- To get avalanche we need:
$\Delta \mathrm{U}_{\text {kin }}$ between collisions (1) and (2) $>\Delta \mathrm{U}=\mathrm{V}_{\text {ion }} \mathrm{e}$
- Acceleration in uniform field: change in kinetic energy

$$
\Delta U_{\mathrm{kin}}=\mathrm{e}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)=\mathrm{e} \mathrm{E} \mathrm{~d}_{12}
$$

- The avalanche condition is then:

$$
\mathrm{E}=\mathrm{V}_{\mathrm{gap}} / \mathrm{d}>\mathrm{V}_{\text {ion }} / \lambda_{\mathrm{mfp}}
$$

Apr 82005

- Define $\mathrm{V}_{\text {ion }}=\Delta \mathrm{U} / \mathrm{q}$

Ionization potential

- One e- in, two e- out: avalanche?

Apr 82005

Experiment EB

(i) If Density n is big $\rightarrow \lambda_{\mathrm{mfp}}$ small

(ii) If size σ of molecules is big $\rightarrow \lambda_{\mathrm{mfp}}$ small

Understand the relationship between $\mathrm{V}_{\mathrm{gap}}, \mathrm{d}, \mathrm{V}_{\text {ion }}$ and mean free path
Understand the relationship between mean free path density and cross-section
Understand how measurement was performed
Apr 82005 and key steps of analysis

Magnetic Force

- Unlike Poles of a magnet attract

- Like Poles repel

Understand the Magnetic Field of a dipole magnet Understand the direction of force between dipoles Understand the net force on dipole in non-uniform field Understand the absence of magnetic charges (monopoles)

Apr 82005

Current and Current

Experiment MF

Attraction

Repulsion

Work done on moving charge

Magnetic Field does no Work!

$\vec{F}=\mathbf{q} \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$

Right-Hand Rule (version 2)

Force on a Wire carrying current I

Apr 82005

Current: Source of B-Field

- Current as Source of B
- Magnetic Field lines are always closed
- no Magnetic Charge (Monopole)
- Corkscrew Rule

Apr 82005

Currents and B-Field

Understand the use of the superposition principle to add fields from different sources

Currents and B-Field

- Solenoid: Large, uniform B inside
- Superposition Principle!

Magnetic Field for a Moving Charge

$$
\mathrm{d} \overrightarrow{\mathrm{~B}}=\frac{\mu_{0}}{4 \pi} \mathrm{dq} \overrightarrow{\mathrm{v}} \times \frac{\hat{r}}{r^{2}} \quad \text { moving charge dq }
$$

Magnetic Field dB for a moving charge dq

Apr 82005

Magnetic Field for Current I

$\mathrm{d} \overrightarrow{\mathrm{B}}=\frac{\mu_{0}}{4 \pi} \mathrm{I} \overrightarrow{\mathrm{dl}} \times \frac{\hat{r}}{\mathrm{r}^{2}} \quad$ Law of Biot-Savart

Magnetic Field dB for current through segment dl
For total B-Field: Integrate over all segments dl

No extensive calculations in Quiz ©
Understand how to use Biot-Savart to find the direction of field for current-element Id and distance R

Apr 82005

Gauss' Law for Magnetic Fields

$$
\Phi_{B}=\oint_{A} \vec{B} \cdot d \vec{A}=0
$$

- Magnetic Flux through closed surface is 0
- This says: There are no magnetic monopoles
- Important Law - one of Maxwell's equations
- Unfortunately of limited practical use

Ampere's Law

Ampere's Law

 can choose the integration path!

$$
\begin{aligned}
\vec{B} \perp d \vec{l} & \Rightarrow \vec{B} \cdot d \vec{l}=0 \\
\vec{B} \| d \vec{l} & \Rightarrow \vec{B} \cdot d \vec{l}=B d l
\end{aligned}
$$

Use the corkscrew rule for relating the direction of B and I

Apr 82005

Ampere's Law

\dagger I Ampere's Law helps because we can choose the integration path!

$$
\begin{aligned}
& \oint_{L} \vec{B} \cdot d \vec{l}= \\
& B \oint_{L} d \vec{l}= \\
& B 2 \pi r=\mu_{0} I_{\text {encl }} \\
\Rightarrow & B=\mu_{0} \frac{I}{2 \pi r}
\end{aligned}
$$

Apr 82005

Coaxial Cable

The outside field vanishes for $I_{2}=-I_{1}$

Apr 82005
\qquad

Magnetic Induction

\rightarrow Currents give rise to B-Field.
Q: Can B-Field give rise to current?
A: Only if the Magnetic Flux changes with time!

```
Understand how to calculate magnetic flux
Understand how to apply Lenz' Rule
    to find direction of induced current
Understand connection between induced EMF
    and induced current
Understand how to use Faradays Law
    to connect magnitude of EMF and d\Phi/dt
```


Experiment MF

Understand the relationship between current in coils

 and direction and magnitude of force between themUnderstand the shape of the magnetic field produced by a current loop or thin coil

Understand how measurement was performed and key steps in the analysis

Apr 82005

Faraday's Law

$$
\Phi_{B}=\int_{A} \vec{B} \cdot d \vec{A}
$$

Magnetic Flux

(usually, A is not a closed surface)

$$
\xi_{\text {ind }}=-\frac{d \Phi_{B}}{d t}
$$

Faraday's Law

Faraday's Law

magnetic flux Φ_{B} can change, because
\rightarrow the magnetic field $\backslash B \mid$ changes
\rightarrow the angle between B and A changes
\rightarrow the area $|\mathrm{A}|$ (size of circuit in $\overrightarrow{\mathbf{A}}$) changes

Apr 82005

Lenz' Rule

$\xi_{\text {ind }}=-\frac{d \Phi_{B}}{d t}$
$\Rightarrow I_{\text {ind }}=\frac{\xi_{\text {ind }}}{R}$
Lenz' Rule:

Sign of Iind such that it opposes the flux change that generated it

Apr 82005
\qquad

Use of Faraday's Law

To find direction of $\mathrm{I}_{\text {ind }}$:
\rightarrow Determine Φ_{B}
\rightarrow Does $\left|\Phi_{\mathrm{B}}\right|$ increase or decrease?
\rightarrow Find sign of $\mathrm{I}_{\text {ind }}$ using Lenz' rule

Lenz' Rule

The Field of $\mathrm{I}_{\text {ind }}$ DOES NOT

 necessarily oppose Φ_{B} !
The Field of $\mathrm{I}_{\text {ind }}$ DOES oppose the change of $\Phi_{\mathbf{B}}\left(=\mathrm{d} \Phi_{\mathrm{B}} / \mathrm{dt}\right)$.

Lenz' Rule redux

In most cases:

```
If |\mp@subsup{\Phi}{\mathbf{B}}{}|}\mathrm{ increases:
```

$\mathbf{B}\left(\mathbf{I}_{\text {ind }}\right)$ opposite direction to $\mathbf{B}_{\mathbf{e x t}}$
If $\left|\Phi_{\mathbf{B}}\right|$ decreases:
$\mathbf{B}\left(\mathbf{I}_{\text {ind }}\right)$ same direction as $\mathbf{B}_{\text {ext }}$

