

$$\vec{F} = q \vec{v} \times \vec{B}$$

Right-Hand Rule (version 2)

Magnetic Field for Current I

Law of Biot-Savart

Magnetic Field dB for current through segment dl

For total B-Field: Integrate over all segments dl

No extensive calculations in Quiz ③

Understand how to use Biot-Savart to find the direction of field for current-element Idl and distance R

Apr 8 2005

Gauss' Law for Magnetic Fields

$$\Phi_B = \oint_A \vec{B} \cdot d\vec{A} = 0$$

- Magnetic Flux through closed surface is 0
- This says: There are no magnetic monopoles
- Important Law one of Maxwell's equations
- Unfortunately of limited practical use

Apr 8 2005

Faraday's Law **Magnetic Induction** $\Phi_B = \int \vec{B} \cdot d\vec{A}$ \rightarrow Currents give rise to B-Field. **Magnetic Flux** (usually, A is not a closed surface) Q: Can B-Field give rise to current? A: Only if the Magnetic Flux changes with time! $d\Phi_B$ **Faraday's Law** ξ_{ind} dtUnderstand how to calculate magnetic flux Understand how to apply Lenz' Rule to find direction of induced current $\frac{\xi_{ind}}{R}$ $\Rightarrow I_{ind} =$ Understand connection between induced EMF and induced current Understand how to use Faradays Law Ŕ to connect magnitude of EMF and $d\Phi/dt$ Apr 8 2005 Apr 8 2005

Lenz' Rule

The Field of I_{ind} DOES NOT necessarily oppose Φ_B !

The Field of I_{ind} DOES oppose the change of Φ_B (=d Φ_B /dt).

Apr 8 2005

Lenz' Rule redux

In most cases:

- If |Φ_B| increases : B(I_{ind}) opposite direction to B_{ext}
- If |Φ_B| decreases : B(I_{ind}) same direction as B_{ext}

Apr 8 2005