Quiz \#4 preparations

- Quiz 4: Wed, 5/4, 10AM,
- 1 sheet with formulae etc
- No books, calculators
- Evening review: Tue, 5/3, 7PM
- Tutoring:
- Angel Solis, Mon + Tue, 5/2, 5-7PM,

What you need to know

- Transformers

- Basic principle
- Transformer in HVPS
- Relationship between I,V,P on primary/ secondary side
- Demos
- Jacobs Ladder
- Melting nail

Review for Quiz \#4

Transformer Action

- Transformer action $E M F_{S} / E M F_{p}=N_{s} / N_{p}$
- Transformers allow change of amplitude for AC voltage
- ratio of secondary to primary windings
- Constructed such that Φ_{B} identical for primary and secondary
-

Mutal Inductance

- Coupling is symmetric: $\mathrm{M}_{12}=\mathrm{M}_{21}=\mathrm{M}$
- M depends only on Geometry and Material
- Mutual inductance gives strength of coupling between two coils (conductors):
$E M F_{2}=-\mathrm{N}_{2} \mathrm{~d} \Phi_{\mathrm{B}} / \mathrm{dt}=-\mathrm{M} \mathrm{dI} 1 / \mathrm{dt}$
- M relates $E M F_{2}$ and I_{1} (or $E M F_{1}$ and I_{2})
- Units: $[\mathrm{M}]=\mathrm{V} /(\mathrm{A} / \mathrm{s})=\mathrm{V}$ s $/ \mathrm{A}=\mathrm{H}$ ('Henry')

May 22005

- Signal transmitted by varying B-Field
- Coupling depends on Geometry (angle, distance)

May 22005

Example: Solenoid

Q: How big is L ?
$A: L=\mu_{0} N^{2} A / L$

Example: Two Solenoids

Length Q : How big is $\mathrm{M}=\mathrm{N}_{2} \Phi_{\mathrm{B}} / \mathrm{I}_{1}$?

May 22005
Self Inductance

Self Inductance

- L is also measured in [H]
- L connects induced EMF and variation in current:

EMF $=-\mathrm{LdI} / \mathrm{dt}$

- Remember Lenz' Rule:

Induced EMF will 'act against' change in current -> effective 'inertia'

- Delay between current and voltage

What you need to know

- Inductance
- Mutual Inductance
- Definition
- Calculation for simple geometry
- Self Inductance
- Definition
- Calculation for simple geometry
- Direction of induced EMF (depends only on dI/dt)

May 22005

'Back EMF'

RL Circuits

- Inductance leads to 'delay' in reaction of current to change of voltage V_{0}
- All practical circuits have some L and R - change in I never instantaneous

RL circuit

- L counteracts change in current both ways
- Resists increase in I when connecting voltage source
- Resists decrease in I when disconnecting voltage source
- 'Back EMF'
- That's what causes spark when switching off e.g. appliance, light

Energy Storage in Inductor

- Energy in Inductor
- Start with Power $\mathrm{P}=\mathrm{V} * \mathrm{I}=\mathrm{LdI} / \mathrm{dt} \mathrm{I}=\mathrm{dU} / \mathrm{dt}$
-> dU = L dI I
-> $\quad U=1 / 2 L^{2}$
- Where is the Energy stored?
- Example: Solenoid (but true in general)
$\mathrm{U} /$ Volume $=1 / 2 \mathrm{~B}^{2} / \mu_{0}$
May 22005

What you need to know

- Inductors
- I(t) in DC RL circuits
- Energy storage in inductors
- Practical use

May 22005

Summary of Circuit Components

($\quad \mathbf{V} \quad \mathbf{V}(\mathbf{t})=\mathbf{V}_{\mathbf{0}} \boldsymbol{\operatorname { c o s }}(\omega \mathrm{t})$
Wr $\quad \mathbf{R} \quad \mathbf{V}_{\mathbf{R}}=-\mathbf{I} \mathbf{R}$
$000 \gamma \mathbf{L} \quad \mathbf{V}_{\mathbf{L}}=-\mathbf{L} \mathbf{d I} / \mathbf{d t}$

RLC circuits

- Combine everything we know...
- Resonance Phenomena in RLC circuits
- Resonance Phenomena known from mechanics (and engineering)
- Great practical importance

R,L,C in AC circuit

- AC circuit
- $I(t)=I_{0} \sin (\omega t)$
- $\left.\mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \sin (\omega \mathrm{t}+\phi) \quad\right\}$ same $\omega!$
- Relationship between V and I can be characterized by two quantities
- Impedance $Z=V_{0} / I_{0}$
- Phase-shift ϕ

Impedance $Z=V_{0} / I_{0}$
Phase-shift ϕ
May 22005

RLC circuit

L

May 22005

First: Look at the components

RLC circuit

Low Frequency
High Frequency

May 22005
RLC circuit
$\mathrm{V}_{0} \sin (\omega \mathrm{t})=\mathrm{I}_{0}\{[\omega \mathrm{~L}-1 /(\omega \mathrm{C})] \cos (\omega \mathrm{t}-\phi)+\mathrm{R} \sin (\omega \mathrm{t}-$ $\phi)\}$

Solution (requires two tricks):
$I_{0}=V_{0} /\left([\omega L-1 /(\omega C)]^{2}+R^{2}\right)^{1 / 2}=V_{0} / Z$
$\tan (\phi)=[\omega \mathrm{L}-1 /(\omega \mathrm{C})] / R$
$->$ For $\omega \mathrm{L}=1 /(\omega \mathrm{C}), \mathrm{Z}$ is minimal and $\phi=0$
i.e. $\omega 0=1 /(L C)^{1 / 2}$ Resonance Frequency

May 22005

Resonance

- Practical importance

- 'Tuning' a radio or TV means adjusting the resonance frequency of a circuit to match the frequency of the carrier signal

Electromagnetic Oscillations

- In an LC circuit, we see oscillations:

- Q: Can we get oscillations without circuit?
- A: Yes!
- Electromagnetic Waves

May 22005

Displacement Current

- Ampere's Law broken - How can we fix it?

Displacement Current $I_{D}=\varepsilon_{0} \mathrm{~d} \Phi \mathrm{E}_{\mathrm{E}} / \mathrm{dt}$

Displacement Current

- Example calculation: $B(r)$ for $r>R$

$->B(r)=R^{2} /\left(2 r c^{2}\right) d V / d t$
- RLC Circuits
- How to obtain diff. equ (but not solve it)
- Definition of impedance, phase shift
- Phaseshift for C,R,L AC circuits
- Impedance, phase shift at resonance
- Limiting behavior of RLC circuit with frequency
- LC, RLC analogy with mechanical systems
- LC oscillations: Frequency, role of E,B energy

May 22005

Displacement Current

- Extension of Ampere's Law:

$\mathrm{Q}=\mathrm{C} V$

Displacement Current $I_{D}=\varepsilon_{0} \mathrm{~d} \Phi \mathrm{E}_{\mathrm{E}} / \mathrm{dt}$
Changing field inside C also produces B-Field!

$$
\begin{aligned}
& \text { Maxwell's Equations } \\
& \oint_{A_{\text {closed }}} \vec{E} \cdot d \vec{A}=\frac{Q_{\text {end }}}{\epsilon_{0}} \\
& \oint_{L_{\text {closed }}} \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t} \\
& \oint_{A_{\text {closed }}} \vec{B} \cdot d \vec{A}=0 \\
& \oint_{L_{\text {closed }}} \vec{B} \cdot d \vec{l}=\mu_{0} I_{\text {encl }}+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
\end{aligned}
$$

- Symmetry between E and B
- although there are no magnetic monopoles
- Basis for radio, TV, electric motors, generators, electric power transmission, electric circuits etc May 22005

$$
\begin{aligned}
& \text { Maxwell's Equations } \\
& \oint_{A_{\text {closed }}} \vec{E} \cdot d \vec{A}=\frac{Q_{\text {end }}}{\epsilon_{0}} \\
& \oint_{L_{\text {closese }}} \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t} \\
& \oint_{A_{\text {closed }}} \vec{B} \cdot d \vec{A}=0 \\
& \oint_{L_{\text {closed }}} \vec{B} \cdot d \vec{l}=\mu_{0} I_{\text {encl }}+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
\end{aligned}
$$

- M.E.'s predict electromagnetic waves, moving with speed of light
- Major triumph of science

May 22005

Reminder on waves

- Types of waves
- Transverse
- Longitudinal
- compression/decompression

Reminder on waves

At a moment in time:

At a point in space:

-

What you need to know

- Displacement current

- Definition
- Calculation for simple geometry
- It's not a current
- Maxwells equations
- Meaning in words

May 22005
May 22005

Wave Equation

- Wave equation:

$$
\frac{\partial^{2} D(x, t)}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} D(x, t)}{\partial t^{2}} \quad \begin{gathered}
\text { Couples variation in } \\
\text { time and space }
\end{gathered}
$$

- Speed of propagation: $v=\lambda f$
- We can derive a wave equation from Maxwells equations (NOT IN QUIZ)

Plane waves

- Example solution: Plane waves
$E_{y}=E_{0} \cos (k z-\omega t)$
$B_{x}=B_{0} \cos (k z-\omega t)$
with $k=\frac{2 \pi}{\lambda}, \omega=2 \pi f$ and $f \lambda=c$.

What you need to know

- Waves

- What is a wave?
- Types of waves
- Relationships between wavelength, frequency wave speed
- E.M. waves
- Properties
- Connection to demos (speed, polarisation)
- Relative direction of $\mathrm{E}, \mathrm{B}, \mathrm{v}$

May 22005

AMP Experiment

- Understand general idea/purpose
- Understand voltage dividers
- Undertand need for negative feedback loop

