

Mutal Inductance

- Coupling is symmetric: M₁₂ = M₂₁ = M
- M depends only on Geometry and Material
- Mutual inductance gives strength of coupling between two coils (conductors):

 $EMF_2 = -N_2 d\Phi_B/dt = -M dI_1/dt$

- M relates EMF₂ and I₁ (or EMF₁ and I₂)
- Units: [M] = V/(A/s) = V s /A = H ('Henry')

RL circuit

- L counteracts change in current both ways
 - Resists increase in I when connecting voltage source
 - Resists decrease in I when disconnecting voltage source
 - Back EMF'
- That's what causes spark when switching off e.g. appliance, light

May 2 2005

Energy Storage in Inductor • Energy in Inductor - Start with Power P = V*I = L dI/dt I = dU/dt -> dU = L dI I-> $U = 1/2 L I^2$ • Where is the Energy stored? - Example: Solenoid (but true in general)

U/Volume = $1/2 B^2/\mu_0$

What you need to know

- How to obtain diff. equ (but not solve it)
- Definition of impedance, phase shift
- Phaseshift for C,R,L AC circuits
- Impedance, phase shift at resonance
- Limiting behavior of RLC circuit with frequency
- LC, RLC analogy with mechanical systems
- LC oscillations: Frequency, role of E,B energy

Maxwell's Equations

∕1/c²

$$\begin{split} \oint_{A_{closed}} \vec{E} \cdot d\vec{A} &= \frac{Q_{encl}}{\epsilon_0} \\ \oint_{L_{closed}} \vec{E} \cdot d\vec{l} &= -\frac{d\Phi_B}{dt} \\ \oint_{A_{closed}} \vec{B} \cdot d\vec{A} &= 0 \\ \oint_{L_{closed}} \vec{B} \cdot d\vec{l} &= \mu_0 I_{encl} + \mu_0 \frac{d\Phi_E}{dt} \end{split}$$

- M.E.'s predict electromagnetic waves, moving with speed of light
- Major triumph of science

