Electricity and Magnetism

- Recap:
 - Confirmation of inverse square law
 - Superposition principle
 - Induction demo
- Electric field

Superposition principle

• Just add the forces on Q₁ (as vectors)

Superposition principle

- Just add the forces on Q₁!
- Works for arbitrary number of charges:

$$\vec{F}_{0,total} = \sum \vec{F}_{0,i} = \sum k \cdot \frac{Q_0 Q_i}{r_{i0}^2} \hat{r}_{i0}$$

Superposition principle

- What to do for many, many charges?
 10⁹ e⁻ on glass rod...
- Replace sum with integral!

$$\vec{F}_{0,total} = \int d\vec{F}_0 = \int k \cdot \frac{Q_0 dQ}{r^2} \hat{r}$$

Two spheres, 1 ping-pong ball All conducting, neutral

Approach with charged glass rod Charges are induced on spheres

Approach with charged glass rod Charges are induced on spheres

>Net Force on ping-pong ball

Net Force on ping-pong ballAttracted to sphere 1

Ping-pong ball touches sphere 1 Picks up positive charge!

Ping-pong now attracted to sphere 2

Ping-pong touches sphere 2Picks up negative charge

Each time, there's less charge to pick up Eventually, process comes to a halt

Now remove rod Charge on 1 and 2 equal, opposite Unstable equilibrium

One side wins, attracts ball Ball picks up charge -> Repulsion

Touches other sphereContinue until both spheres neutral

- What's a field?
- How's the electric field defined?
- Is it real?

Example of Scalar Field

• Each Location \vec{X} connected to a Number: T(X)

Example of Vector Field

• Each Location \vec{X} connected to a vector: $\vec{v}(X)$

• Electric field is a Vector Field:

$$\vec{E}(\vec{x}) \stackrel{\text{\tiny def}}{=} \vec{F}(\vec{x})/q$$

- For each location x, E gives Force on a 'test charge' q
- We can say: Space around charge Q is modified, such that 'test charge' q feels a force F=Eq

- Superposition principle for Forces

 also true for Electric field (from Definition)
- Field from many charges is vector sum of individual fields
 - integral in limit of continous distributions

Visualizing Fields

- One way to do it
 - Color: Speed
 - Line orientation, arrow: Direction

Visualizing the Electric Field

- Electric field 'lines'
 Michael Faraday, 1791-1867
- Cartoon of Strength and Direction of Field
- Line Density: Strength
- Line Orientation: Direction (for positive test charge q)

