Electricity and Magnetism

- More on
- Electric Flux
- Gauss' Law

More on Electric Flux and

 Gauss' Law$\frac{\beta \vec{E} \cdot d \vec{A}=\frac{Q}{\epsilon_{0}}}{\phi \vec{B} \cdot d \vec{A}=0}$

$$
\left.\begin{array}{l}
\oint \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t} \\
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
\end{array}\right\}
$$

Maxwell Equations (1873)

Electric Flux

 ' Φ_{E} ' is a Scalar: How much?

I.e. how much field passes through surface A?

\vec{A} ?

- Direction
- Normal to surface
- Magnitude
- Surface Area
- For closed surface
- Pointing outwards

Electric Flux

- What if \vec{E} not constant on surface A ?
- Use integral

$$
\Phi_{E}=\int_{A} \vec{E} \cdot d \vec{A}
$$

- Often, 'closed’ surfaces

$$
\Phi_{E}=\oint_{A} \vec{E} \cdot d \vec{A}
$$

Gauss' Law

- Connects Flux through closed surface and charge inside this surface:

$$
\oint_{A} \vec{E} \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\epsilon_{0}}
$$

Note: $\mathbf{k}=\mathbf{1 / 4} \mathbf{\pi} \varepsilon_{\mathbf{0}}$

Gauss' Law

$$
\oint_{A} \vec{E} \cdot d \vec{A}=\frac{Q_{\text {end }}}{\epsilon_{0}}
$$

- True for ANY closed surface around $\mathrm{Q}_{\text {enc }}$
- Suitable choice of surface A can make integral very simple

Use the Symmetry!

Point Charge

Spherical Surface

(1) $r>r_{0}$:

$$
\begin{aligned}
\oint_{A_{1}} \vec{E} \cdot d \vec{A} & =E\left(4 \pi r^{2}\right)=\frac{Q_{\text {end }}}{\epsilon_{0}} \\
& \Longrightarrow E=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}}
\end{aligned}
$$

Use the Symmetry!

Charged Sphere

$\vec{E} \| \overrightarrow{d A} \Rightarrow \vec{E} \cdot \overrightarrow{d A}=E d A$
$E(r)=$ const .

Use the Symmetry!

(1) $r>r_{0}$:

$$
\begin{aligned}
\oint_{A_{1}} \vec{E} \cdot d \vec{A} & =E\left(4 \pi r^{2}\right)=\frac{Q_{\text {encl }}}{\epsilon_{0}} \\
& \Longrightarrow E=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}}
\end{aligned}
$$

(2) $r<r_{0}$:

$$
\begin{aligned}
\oint_{A_{2}} \vec{E} \cdot d \vec{A} & =E\left(4 \pi r^{2}\right)=\frac{Q_{\text {encl }}}{\epsilon_{0}} \\
Q_{\text {encl }} & =\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi r_{0}^{3}} Q=\frac{r^{3}}{r_{0}^{3}} Q \\
& \Longrightarrow E=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r_{0}^{3}} r
\end{aligned}
$$

Spherical Surfaces
$\vec{E} \| \overrightarrow{d A} \Rightarrow \vec{E} \cdot \overrightarrow{d A}=E d A$
$E(r)=$ cons.

Use the Symmetry!

Charged Line

Cylindrical Surface

$$
\begin{array}{rlrl}
\oint_{\text {cyl }} \vec{E} \cdot d \vec{A} & =E(2 \pi r l)=\frac{Q_{\text {encl }}}{\epsilon_{0}}=\frac{\lambda l}{\epsilon_{0}} & \vec{E} \perp \overrightarrow{d A} \Rightarrow \vec{E} \cdot \overrightarrow{d A}=0 \\
\Longrightarrow E & \overrightarrow{d A} \Rightarrow \vec{E} \cdot \overrightarrow{d A}=E d A \\
\Longrightarrow E \epsilon_{0} & \frac{\lambda}{r} & & E(r)=\text { const. }
\end{array}
$$

Feb 202002

Hollow conducting Sphere

Feb 202002

Last example

$$
\sigma=Q / A \quad \begin{aligned}
\phi_{A} \vec{E} \cdot d \vec{A} & =E A=\frac{Q_{\text {end }}}{\epsilon_{0}}=\frac{\sigma A}{\epsilon_{0}} \\
& \Rightarrow E=\frac{\sigma}{\epsilon_{0}}
\end{aligned}
$$

Feb 202002

Faraday Cage

Hollow Metal Sphere

Figure by MIT OCW. Van der Graaf Generator

Faraday Cage

Hollow Metal Sphere

Figure by MIT OCW.
Van der Graaf Generator

'Challenge' In-Class Demo

