Electricity and Magnetism

Today

- Electric Potential Energy
- Electric Potential
- Example of calculation
- Practical applications
- Conductors, Isolators and Semi-Conductors

- Work in the Electrostatic Field
- Electrostatic Potential Energy
- Electrostatic Potential

Work and Electrostatic Force

$$F_{ES} \text{ is conservative!}$$

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r^2} \hat{r}$$

$$W_{ba} = \int_a^b \vec{F} \cdot d\vec{l} = \frac{Qq}{4\pi\epsilon_0} \int_a^b \frac{1}{r^2} \hat{r} \cdot d\vec{l}$$

$$= -\frac{Qq}{4\pi\epsilon_0} \int_a^b \frac{1}{r^2} dr; \text{ because } \hat{r} \cdot d\vec{l} = dl \cos(\alpha) = -dr$$

$$W_{ba} = U(a) - U(b) \text{ with } U(r) = \frac{1}{4\pi\epsilon_0} \frac{Qq}{r}$$

Electric Potential Energy

- Note: What we used was the fact that Coulomb Force is *radial* (i.e. F | | r)
 – all radial forces are conservative (e.g.
 - an radial forces are conservative (e.g. Gravity)

Electric Potential Energy

• Potential Energy for two charges

$$U(r) = rac{Qq}{4\pi\epsilon_0} rac{1}{r} ext{ for } U(\infty) \equiv 0.$$

- Can only observe differences in potential
 often set U(∞) = 0 or U(earth) = 0
 - U(r) energy needed to bring q,Q together from infinity

Electric Potential

- Electric Potential Energy proportional to q
- Define V = U/q

$$\frac{\mathbf{V} = \mathbf{U}/\mathbf{q}}{\frac{W_{ba}}{q} = \frac{U(a)}{q} - \frac{U(b)}{q} = V(a) - V(b) = -\Delta V$$

- Electric Potential V:
 - Units are Volt [V] = [J/C]

Electric Potential

- Note: because $V = U/q \rightarrow U = V q$
 - for a given V, U can be positive or negative, depending on sign of q
- Example: Single Charge

$$V(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r}$$
 for $V(\infty) \equiv 0$.

Electric Potential for many charges

• Superposition principle....

$V(r) = \sum 1/(4\pi\epsilon_0) Q_i/r_i$

- Sum of scalars, not vectors!
- Integral for continous distributions

Electric Potential for many charges

• Electric potential depends on charges that create field, not the test charge!

$$V(r) = \sum \frac{1}{4\pi\epsilon_0} Q_i / r_i$$

• V tells us how much energy a charged object can aquire when moving from a to b

Electrical potentials

- Battery: 1.5 V
- Power outlet: 120 V
- HV power line: 10⁶ V
- Accelerators: 10⁸ V
- Thunderstorm: 10⁸ V

Example: Capacitor plates

- Deposite opposite charges on plates
- What is the Electric Potential?
 What does E look like?
- Move charge +q from a to b

Example: Capacitor plates

$$egin{array}{rl} &=& \int_a^b q ec{E} \cdot dec{l} = U(a) - U(b); ec{E} || dec{l} \ &=& \int_a^b q ec{E} dx = q ec{E}(x_b - x_a) \ &\Rightarrow& U(x) = -q ec{E} x; (U(0) \equiv 0) \ &\Rightarrow& V(x) = - ec{E} x; (V(0) \equiv 0) \end{array}$$

Demo: Ping-Pong Ball

Applications

$$\begin{array}{rcl} 1/2mv_0^2+U(0) &=& 1/2mv_f^2+U(d) \\ \\ \Rightarrow& 1/2mv_f^2 &=& -q\Delta V \end{array}$$

- Energy for single particle (e.g. electron) small
- Often measured in 'Electron Volt' [eV]
- Energy aquired by particle of charge 10⁻¹⁹ C going through ∆V=1V
- Independent of d

Applications

Cathode Ray Tube

Relativistic Heavy Ion Collider

$E_{kin} \sim 10 \text{ keV} (10^4 \text{eV})$

$E_{kin} \sim 100 \text{ GeV} (10^{11} \text{eV})$

Conductors

- Important for next few weeks
 Electrical Circuits
- Why are some materials conductive?
 All materials contain electrical charges!

Conductivity

Microscopic view

Conductivity

 How can we get charges 'unstuck'?

 Give them enough energy to jump out of potential wells

In-Class Demo

In-Class Demo

Ions discharge Electroscope

Charged Ions

Electroscope

- Semi-conductor
 - # of charges controllable (by T and V)
 - At T=0°C $E_{kin} \sim 1/40 \text{ eV}$
 - Basis of all Electronic Circuits (e.g. Computers)

Conductivity

- Note: Usually, charge carried by electrons, but not always
 - 'holes' (i.e. missing electrons) in semiconductors

Conductors

- E = 0 inside
 - otherwise charges would move
- No charges inside
 - Gauss
- E perpendicular to surface
 otherwise charges on surface would move
- Potential is constant on conductor

Conductors

Potential is constant on conductor

$$egin{array}{rcl} V(a)-V(b)&=&rac{W_{ba}}{q}=rac{1}{q}\int_a^bec{E}dec{l}\ &=&0 ext{ as }E=0 ext{ in conductors }. \end{array}$$