Electricity and Magnetism

• Review

- Electric Charge and Coulomb's Force
- Electric Field and Field Lines
- Superposition principle
- E.S. Induction
- Electric Dipole
- Electric Flux and Gauss' Law
- Electric Potential Energy and Electric Potential
- Conductors, Isolators and Semi-Conductors

- Fast summary of all material so far
 - show logical sequence
 - help discover topics to refresh for Friday

Electric Charge and Electrostatic Force

New Property of Matter: Electric Charge

– comes in two kinds: '+' and '-'

Connected to Electrostatic Force

- attractive (for '+-') or repulsive ('--', `++')

- Charge is conserved
- Charge is quantized

Strength

Coulomb's Law

$$\vec{F}_{12} = k \frac{Q_1 Q_2}{r_{21}^2} \hat{r}_{21} = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r_{21}^2} \hat{r}_{21}$$

- Inverse square law (F ~ $1/r^2$)
- Gives magnitude and direction of Force
- Attractive or repulsive depending on sign of $\rm Q_1\rm Q_2$

Coulomb's Law

Coulomb's Law

 $\vec{F}_{12} = - \vec{F}_{21}$

- Note:
 - Total force is given by vector sum
 - Watch out for the charge signs
 - Use symmetry when possible

Superposition principle

- If we have many, many charges
 Approximate with continous distribution
- Replace sum with integral!

$$\vec{F}_{0,total} = \int d\vec{F}_0 = \int k \cdot \frac{Q_0 dQ}{r^2} \hat{r}$$

Electric Field

- New concept Electric Field E
- Charge Q gives rise to a Vector Field

$$\vec{E}(\vec{x}) = \vec{F}(\vec{x})/q$$

• E is defined by strength and direction of force on small test charge q

The Electric Field

- Electric Field also exists is test charge q is not present
- The charge Q gives rise to a property of space itself – the Electric Field
- For more than one charge -> Superposition principle

Electric Field

- For a single charge $\vec{E} = k \frac{Q}{r^2} \hat{r}$
- Visualize using Field Lines

Field Lines

- Rules for field lines
 - Direction: In direction of **E** at each point
 - Density: Shows magnitude of E
 - Field Lines never cross
 - From positive to negative charge
 - i.e. show direction of force on a positive charge
 - Far away: Everything looks like point charge

Electric Dipole

Torque $\vec{\tau} = \vec{p} \times \vec{E}$ $\vec{p} = Q I$ Dipole moment

Feb 27 2002

Electrostatic Induction

- Approach neutral object with charged object
- Induce charges (dipole)
- Force between charged and globally neutral object

Electric Flux

• Electric Flux:
$$\Phi_{\mathbf{E}} = \vec{\mathbf{E}} \cdot \vec{\mathbf{A}}$$

- Same mathematical form as water flow
- No 'substance' flowing
- Flux tells us how much field 'passes' through surface A

Electric Flux

For 'complicated' surfaces and non-constant E:
 Use integral

$$\Phi_E = \int_A \vec{E} \cdot d\vec{A}$$

• Often, 'closed' surfaces

$$\Phi_E = \oint_A \vec{E} \cdot d\vec{A}$$

Electric Flux

• Example of closed surface: Box (no charge inside)

• Flux in (left) = -Flux out (right): $\Phi_{E} = 0$

- How are flux and charge connected?
- Charge Q_{encl} as source of flux through closed surface

$$\oint_A ec{E} \cdot dec{A} \; = \; rac{Q_{encl}}{\epsilon_0}$$

$$\oint_A ec{E} \cdot dec{A} \; = \; rac{Q_{encl}}{\epsilon_0}$$

- True for ANY closed surface around Q_{encl}
- Relates charges (cause) and field (effect)

- Different uses for Gauss' Law
 - Field **E** -> **Q**_{encl} (e.g. conductor)
 - Q_{encl} -> Field E (e.g. charged sphere)
- Proper choice of surface use symmetries

$$\vec{E} \perp \vec{dA} \Rightarrow \vec{E} \cdot \vec{dA} = 0$$

$$\vec{E} ||\vec{dA} \Rightarrow \vec{E} \cdot \vec{dA} = E dA$$

$$E(r) = \text{const.} \Rightarrow \oint_A E \cdot dA = E \oint_A dA = EA$$

$$\vec{E} = 0 \Rightarrow \oint_A \vec{E} \cdot d\vec{A} = 0 = \frac{Q_{encl}}{\epsilon_0}$$

Feb 27 2002

• Charge Sphere radius r_0 , charge Q, $r > r_0$

$$\begin{aligned} \frac{Q_{encl}}{\epsilon_0} &= \oint_{sphere} \vec{E} \cdot d\vec{A} &= \\ & \oint_{sphere} EdA &= \\ & E \oint_{sphere} dA &= \\ & E(4\pi r^2) \implies \\ & E &= \frac{1}{4\pi\epsilon_0} \frac{Q_{encl}}{r^2} \quad \longleftarrow \mathbf{Q}_{encl} = \mathbf{Q} \end{aligned}$$

- Most uses of Gauss' Law rely on simple symmetries
 - Spherical symmetry
 - Cylinder symmetry
 - (infinite) plane
- and remember, **E** = **O** in conductors

Feb 27 2002

Electric Potential Energy

- Electric Force is conservative
 all radial forces are conservative (e.g. Gravity)
- We can define Electric Potential Energy

$$W_{ba} = \int_{a}^{b} q \vec{E} \cdot d\vec{l} = U(a) - U(b) = -\Delta U$$

$$\int_{F}$$

Example: Two charges

- If q,Q same sign:
 - U > 0; we have to do work 'pushing' charges together
- If q,Q unlike sign:
 - U < 0; Electric force does work 'pulling' charges together

Feb 27 2002

Electric Potential

- Electric Potential Energy proportional to q
- Define V = U/q

$$\frac{W_{ba}}{q} = \frac{U(a)}{q} - \frac{U(b)}{q} = V(a) - V(b) = -\Delta V$$

Electric Potential V:
– Units are Volt [V] = [J/C]

Electric Potential

• Note: because $V = U/q \rightarrow U = Vq$

 for a given V: U can be positive or negative, depending on sign of q

• V : Work per unit charge to bring **q** from a to b

$$\frac{W_{ba}}{q} = \frac{U(a)}{q} - \frac{U(b)}{q} = V(a) - V(b) = -\Delta V$$

• Ex.: Single Charge $V(r) = \frac{Q}{4\pi\epsilon_0} \frac{1}{r}$ for $V(\infty) \equiv 0$.

Electric Potential for many charges

• Superposition principle....

$V(x) = \sum 1/(4\pi\epsilon_0) Q_i/r_i$

- Sum of scalars, not vectors!
- Integral for continous distributions

Example: Three charges

Example: Capacitor plates

$$V_{ba} = \int_{a}^{b} q\vec{E} \cdot d\vec{l} = U(a) - U(b); \vec{E} || d\vec{l}$$
$$= \int_{a}^{b} qEdx = qE(x_{b} - x_{a})$$
$$\Rightarrow U(x) = -qEx; (U(0) \equiv 0)$$
$$\Rightarrow V(x) = -Ex; (V(0) \equiv 0)$$

Applications

$$\begin{array}{rcl} 1/2mv_0^2+U(0) &=& 1/2mv_f^2+U(d) \\ \\ \Rightarrow& 1/2mv_f^2 &=& -q\Delta V \end{array}$$

- Energy for single particle (e.g. electron) small
- Often measured in 'Electron Volt' [eV]
- Energy aquired by particle of charge 10⁻¹⁹ C going through △V=1V

Conductors

- E = 0 inside
 - otherwise charges would move
- No charges inside
 - Gauss
- E perpendicular to surface
 otherwise charges on surface would move
- Potential is constant on conductor