Electricity and Magnetism

- Today
 - Electric current
 - Resitivity/Resistance
 - Ohm's Law

Dielectrics

In your toolbox:

- $C = \varepsilon_0 A/d$

 $\begin{array}{c}
1 & 2 \text{ cm} \\
C &= 1000 \mu F
\end{array}$

• C can be increased with Dielectric

- $C = K \varepsilon_0 A/d$

- K: Dielectric Constant

Microscopic view

Dielectric Constant

• Examples

Material	K	
Vacuum	1	
Air	1.0006	Similar to vacuum
Plexiglass	3.4	
Water	80.4	Large!
Ethanol	23	
Ceramics	~5000	C in HVPS
Glass	5-10	

• So far: Electrostatics

- Look at situation where charges don't move
- E = 0 in conductors
 - otherwise mobile charges would move!
- Now we look at moving charges!
 - Electric currents
 - |E| > 0 possible in conductor

Current I: <u>Net</u> amount of charge passing through conductor per unit time

- Electric Current I:
 - -I = dQ/dt
- Units:
 - -[I] = C/s = A (Ampere)
- 1 A = 1.6 10¹⁹ q_e/s
- I is a scalar, connected to given conductor

- Current I = dQ/dt has a direction
 - Convention: Direction of flow of positive charges
 - In our circuits, I carried by electrons
- To get a current:
 - Need mobile charges
 - Need | E | > 0 (Potential difference)

In-Class Demo I

In-Class Demo I

In-Class Demo I

Neutral molecules: Pos. and neg. charges move together -> No current!

Ions: Pos. and neg. charges move separately -> Current || > 0 !

In-Class Demo II

Solid glass: Potential charge carriers are stuck!

In-Class Demo II

Molten glass: Charge carriers become mobile -> Current flows -> Bulb lights up!

In-Class Demo III

Will the bulb light up? <u>NO</u> No light -> No current -> No mobile charges!

In-Class Demo III

- To get a current, we needed
 - mobile charge carriers
 - a Potential difference
- What determines magnitude of I ?
- -> Microscopic analysis

• Consider an electron in a conductor:

Equation of motion: $\vec{m_e} \cdot \vec{dv/dt} = \vec{q_e} \cdot \vec{E}$

For |E| > 0, |v| increases all the time ($|v| \rightarrow infinity$)

Consider analogy with Gravity

<u>Friction</u> grows with |v|, limits maximal velocity $v < v_{max}$ (mg = f v_{max})

Where does friction come from?

<u>Metal:</u> Electrons move through lattice of atoms Lattice: Thermal vibrations, average position fixed Electrons: Light! Bounce around...

If |E| > 0: Electron accelerated between scatterings <u>On average</u>: Electron moves in -E direction

- Interplay of scattering and acceleration gives an average velocity \vec{v}_D
- V_D is called 'Drift velocity'
- Similar to terminal velocity for parachuting:

- How fast do the electrons move?
 - Thermal speed is big: $v_{th} \sim 10^6$ m/s

– Drift velocity is small: $v_D \sim 10^{-3}$ m/s

- How long do I have to wait when switching on the light?
 - $-\Delta t = 10m/v_D = 10^4 \text{ s} \sim 3 \text{ hours}!?!$
 - No, $\Delta t = 10m/c = 3*10^{-7} s$
- All electrons in conductor start to move, as soon as E > 0

- What determines magnitude of current !?
- Connect macroscopic description (I) with microscopic description

How big is the current I?

Velocity * Area: Flux! (like flow of water)

Def: $\vec{J} = q n_q \vec{v}_D$ <u>Current Density</u> ([J] = A/m²) Then $\vec{I} = \vec{J} \vec{A}$

How does $J = q n_q v_D$ depend on the Field E ?

Remember:
$$\vec{v}_D = (q_e \vec{E}) / f \rightarrow \vec{J} = q^2 n_q / f \vec{E}$$

 $\vec{J} = 1/\rho \vec{E}; \ \rho = f / (q^2 n_q)$ constant

Energy conservation

- We spend energy to apply potential difference
- But velocity of charges doesn't increase
- Where does the energy go?
- 'Friction' of electrons moving through conductor causes heat

Resistance

 $J = 1/\rho E$ and $I = J A \rightarrow I = R V$ for $R = \rho L / A$

Resistance

 $R = \rho L /A = f/(n_q q^2) L/A$

- How can we change Resistance?
 - generally, want low resistance (lose less energy to heat)
 - Make Area A big
 - Make length L short
 - Make f small!
- Demo....

In-Class Demo Light bulb Voltage source Liquid Nitrogen $(T \sim -200^{\circ}C)$

Wire cold -> less resistance -> more current -> bulb burns brighter

In-Class Demo

- T low
- Less vibration
- Electrons move through lattice easily

- T high
- Big vibration
- Electrons bounced around