Electricity and Magnetism

- Today
 - Ohm's Law
 - Electric Power
 - Electromotive Force
 - Circuits
 - Kirchoff's Rules

Electric Current

- We left Electrostatics
 - Now: Charges can move in steady state
- Electric Current I:
 - -I = dQ/dt
 - <u>Net</u> amount of charge moving through conductor per unit time
- Units:

- [I] = C/s = A (Ampere)

Electric Current

- Current I = dQ/dt has a direction
 - Convention: Direction of flow of positive charges
 - In our circuits, I carried by electrons
- To get a current:
 - Need mobile charges
 - Need | E | > 0 (Potential difference)

Resistivity

- Suppose we have
 - mobile charge carriers
 - a Potential difference
- What determines magnitude of ?
 limited by <u>friction</u>
- Charge carriers lose energy in collisions with e.g. metal lattice

If |E| > 0: Electron accelerated between scatterings <u>On average</u>: Electron moves in -E direction

Resistivity

- Interplay of scattering and acceleration gives an average velocity V_D
- V_D is called 'Drift velocity'
- How fast do the electrons move?
 - Thermal speed is big: $v_{th} \sim 10^6$ m/s

– Drift velocity is small: $v_D \sim 10^{-3}$ m/s

 All electrons in conductor start to move, as soon as E > 0

Resistance

- Define R = V/I : <u>Resistance</u>
- $R = \rho L / A = f / (n_q q^2) L / A$

– for constant cross section A

- R is measured in \underline{Ohm} [W] = [V/A]
- Resistivity ρ is property of <u>material</u> (e.g. glass)
- Resistance R is property of <u>specific conductor</u>, depending on material (p) and geometry

Resistance

- $R = \rho L / A = f / (n_q q^2) L / A$
 - assuming constant cross-section A
- What if A = A(x)?
- Slice into pieces dx with constant A

 $dR = \rho \ dx/A(x)$

Integrate

In-Class Demo Light bulb Voltage source Liquid Nitrogen $(T \sim -200^{\circ}C)$

Resistivity depends on Temperature

Resistivity vs Temperature

- Resistivity $\rho = f / (q^2 n_q)$
- For Conductors: f increases with T
 more scattering from vibrating lattice
- For Semiconductors: Different behaviour
 f increases with T

Ohm's law

$$V = R I$$

- Isn't that just the definition of R?
- Not quite
 - Def. R = V/I for any conductor
 - Ohm's Law says that for some conductors, current and voltage are linear
 - For real conductors, that's an approximation (e.g. R = R(T) and T = T(I))

Electric Power

- Fundamental application of Electricity
 - Deliver Electric Power
 - Converted to
 - Mechanical power
 - Heat
 - Light

Power = Energy/time = dW/dt = (dq V)/dt = $dq/dt V = IV = I^2R = V^2/R$

Electric Circuits

Resistor R $\begin{cases} V_{ad} = V \\ V_{ab} = 0 \\ V_{cd} = 0 \end{cases} \rightarrow V_{bc} = V_{ad} = IR$ Voltage Drop ╋ d a **Battery** b a С d

- To keep charge moving
 work W = q V to get from d to a
- Def: $\xi = Work/unit$ charge
 - ξ is '<u>Electromotive Force'</u> (EMF)
- It's not a Force!
- Units are [V]
- Sources of EMF: Battery, LVPS

Electromotive Force

Electromotive Force

- Ideal source of EMF: ξ = V = constant
 independent of I
- Problem: Power P = $IV = V^2/R$

- for R -> 0, power gets infinite

• Real source of EMF: $V = \xi - I r$

- r is internal resistance

Electromotive Force

Old batteries: r gets larger

DC Circuits

- DC: Direction of current doesn't change
- Example: Resistors in series

 $V_{ac} = V_{ab} + V_{ac} = I R_1 + I R_2 = I (R_1 + R_2)$

=
$$I R_{eq}$$
 for $R_{eq} = (R_1 + R_2)$

DC Circuits

• Next example: Resistors in parallel

Kirchoff's Rules

- Junction rule
- At junctions:

 $\Sigma I_{iin} = \Sigma I_{jout}$

Loop rule

Around closed loops: $\Sigma \Delta V_j = 0$ ΔV for both EMFs and Voltage drops

Kirchoff's Rules

R

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for resistors:

 $\Delta V = V_b - V_a =$ - I R , if we go in the direction of I (voltage drop!)

Kirchoff's Rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for EMFs:

 $\Delta V = V_b - V_a = \xi$, if we go in the direction of I

Example

- Pick signs for I_1, ξ
- Junction rule
 - $I_1 = 1A + 2A = 3A$
- Loop rule (1)
 12V 6V 3A r = 0
 - -> r = 6/3 Ω = 2 Ω
- Loop rule (2) $12V - 6V - 1V + \xi = 0$ $-> \xi = 5V$