Electricity and Magnetism

- Today
- DC Circuits
- Kirchoff's Rules
- RC Circuits

Ohm's law

$$
\mathrm{V}=\mathrm{RI}
$$

- Def. $\mathrm{R}=\mathrm{V} / \mathrm{l}$ for any conductor
- Ohm's Law says that for some conductors, current and voltage are proportional
- Ohmic conductors (e.g. Resistors)
- For real conductors, that's an approximation (e.g. $R=R(T)$ and $T=T(I)$)

Electric Power

- Fundamental application of Electricity
- Deliver Electric Power
- Converted to
- Mechanical power
- Heat
- Light

Power $=$ Energy/time $=$
$\mathrm{dW} / \mathrm{dt}=(\mathrm{dq} \mathrm{V}) / \mathrm{dt}=$
$\mathrm{dq} / \mathrm{dt} \mathrm{V}=\underline{\mathrm{V}}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}$

- To keep charge moving
- work $\mathrm{W}=\mathrm{q} \mathrm{V}$ to get from d to a
- Def: $\xi=$ Work/unit charge
- $\quad \xi$ is 'Electromotive Force’ (EMF)
- It's not a Force!
- Units are [V]
- Sources of EMF: Battery, LVPS

Mar 152002

Electric Circuits

Resistor

Mar 152002

I nternal Resistance

Battery

$$
\begin{aligned}
V_{a b} & =I R \\
->\xi-I r & =I R \\
->\quad \mid & =\xi /(r+R)
\end{aligned}
$$

Mar 152002

DC Circuits

Resistors in series

$$
V_{a c}=V_{a b}+V_{a c}=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)
$$

$$
=I R_{e q} \text { for } R_{e q}=\left(R_{1}+R_{2}\right)
$$

DC Circuits

Resistors in parallel

Kirchoff's Rules

- Junction rule

At junctions:

$$
\sum \mathrm{I}_{\mathrm{i} \text { in }}=\sum \mathrm{I}_{\mathrm{j}_{\mathrm{out}}}
$$

Charge conservation

- Loop rule

Around closed loops:

$$
\Sigma \Delta v_{j}=0
$$

$\Delta \mathrm{V}$ for both EMFs and Voltage drops

Energy conservation

Kirchoff's Rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for resistors:

$\Delta V=V_{b}-V_{a}=-I R$, if we go in the direction of I (voltage drop!)

Kirchoff's Rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for EMFs:

v_{b}
$\Delta V=V_{b}-V_{a}=\xi$, if we go in the direction of I

Example

- Pick signs for I_{1}, ξ
- Junction rule

$$
I_{1}=1 A+2 A=3 A
$$

- Loop rule (1)

$$
\begin{aligned}
& 12 \mathrm{~V}-6 \mathrm{~V}-3 \mathrm{~A} r=0 \\
& ->r=6 / 3 \Omega=2 \Omega
\end{aligned}
$$

- Loop rule (2)

$$
\begin{aligned}
& 12 \mathrm{~V}-6 \mathrm{~V}-1 \mathrm{~V}+\xi=0 \\
& ->\xi=-5 \mathrm{~V}
\end{aligned}
$$

RC Circuits

- Currents change with time
- Example: Charging a capacitor

Mar 152002

RC Circuits

- Currents change with time
- Example: Charging a capacitor

$$
\begin{aligned}
\mathrm{t} & =\text { infinity } \\
\mathrm{q} & =\mathrm{C} \xi \\
\mathrm{v}_{\mathrm{c}} & =\mathrm{q} / \mathrm{C}=\xi
\end{aligned}
$$

RC Circuits

- What happens between $\mathrm{t}=0$ and infinity?

Mar 152002

RC Circuits

- What happens between $t=0$ and infinity?

Mar 152002

Charging capacitor

$$
\begin{aligned}
\xi-\frac{q}{C}-I R & =0 \text { Loop Rule } \\
\xi-\frac{q}{C}-\frac{d q}{d t} R & =0 \text { note } q(t=0)=0, \quad I(t=0)=\frac{\xi}{R} \\
\Rightarrow \frac{d q}{d t} & =-\frac{q}{R C}+\frac{\xi}{R} \quad \text { separate variables } \\
\Rightarrow \frac{d q}{q-\xi C} & =-\frac{d t}{R C} \text { integrate } \\
\Rightarrow \int_{0}^{Q} \frac{1}{q-\xi C} d q & =\int_{0}^{t}-\frac{d t}{R C} \\
\Rightarrow \ln \left(\frac{q-\xi C}{-\xi C}\right) & =-\frac{t}{R C} \quad \operatorname{exponentiate} \\
\Rightarrow \frac{q-\xi C}{-\xi C} & =\exp \left(-\frac{t}{R C}\right) \\
\Rightarrow q(l) & =\xi C\left[1-\exp \left(-\frac{t}{R C}\right)\right] \\
\Rightarrow I(t)-\frac{d q}{d t} & --\xi C \exp \left(-\frac{t}{R C}\right) \times\left(-\frac{1}{R C}\right) \\
& =\frac{\xi}{R} \exp \left(-\frac{t}{R C}\right) \\
\Rightarrow V(t)=\frac{q(t)}{C} & =\xi\left[1-\exp \left(-\frac{t}{R C}\right)\right]
\end{aligned}
$$

Charging C

$\mathrm{V}(\mathrm{t}) \uparrow$ t

$$
\begin{aligned}
\text { At } t & =t, \\
\mathrm{q}(\mathrm{t}) & =(1-1 / \mathrm{e}) \mathrm{q}_{\max } \\
& =\underline{63 \%} \underline{\mathrm{~g}_{\max }}
\end{aligned}
$$

In-Class Demo

Discharging a capacitor

Mar 152002

Discharging Capacitor

$$
\begin{aligned}
&-\frac{q}{C}-I R=0 \quad \text { Loop Rule for } \xi=0, q(t=0)=Q_{\text {final }}=\xi C \\
&-\frac{q}{C}-\frac{d q}{d t} R=0 \\
&-\frac{d q}{q}=\frac{d t}{R C} \\
& \Rightarrow \int_{Q_{\text {finase }} \frac{q}{q} d q}=-\int_{0}^{t} \frac{d t}{R C} \\
& \Rightarrow \ln \left(\frac{q}{Q_{\text {final }}}\right)=-\frac{t}{R C} \\
& \Rightarrow q(t)=Q_{\text {final }} \exp \left(-\frac{t}{R C}\right) \\
&=\xi C \exp \left(-\frac{t}{R C}\right) \\
& \Rightarrow I(t)=\frac{d q}{d t}=\xi C \exp \left(-\frac{t}{R C}\right) \times\left(-\frac{1}{R C}\right) \\
&=-\frac{\xi}{R} \exp \left(-\frac{t}{R C}\right) \text { note sign! } \\
& V(t)=\frac{q(t)}{C}=\xi \exp \left(-\frac{t}{R C}\right)
\end{aligned}
$$

Discharging C

Mar 152002

