Electricity and Magnetism

- Today
 - DC Circuits
 - Kirchoff's Rules
 - RC Circuits

Ohm's law

$$V = R I$$

- Def. R = V/I for any conductor
- Ohm's Law says that for some conductors, current and voltage are proportional
 - Ohmic conductors (e.g. Resistors)
- For real conductors, that's an approximation (e.g. R = R(T) and T = T(I))

Electric Power

- Fundamental application of Electricity
 - Deliver Electric Power
 - Converted to
 - Mechanical power
 - Heat
 - Light

Power = Energy/time = dW/dt = (dq V)/dt = $dq/dt V = IV = I^2R = V^2/R$

- To keep charge moving
 work W = q V to get from d to a
- Def: $\xi = Work/unit$ charge
 - ξ is '<u>Electromotive Force'</u> (EMF)
- It's not a Force!
- Units are [V]
- Sources of EMF: Battery, LVPS

Mar 15 2002

Electric Circuits

Resistor R $\begin{cases} V_{ad} = V \\ V_{ab} = 0 \\ V_{cd} = 0 \end{cases} \rightarrow V_{bc} = V_{ad} = IR$ Voltage Drop ╋ d a **Battery** b a С d

Internal Resistance

Resistors in series

$$V_{ac} = V_{ab} + V_{ac} = I R_1 + I R_2 = I (R_1 + R_2)$$

= I R_{eq} for R_{eq} = (R_1 + R_2)

Resistors in parallel

Kirchoff's Rules

- Junction rule
- At junctions:

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

Loop rule

Around closed loops: $\Sigma \Delta V_j = 0$ ΔV for both EMFs and Voltage drops

Kirchoff's Rules

R

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for resistors:

 $\Delta V = V_b - V_a =$ - I R , if we go in the direction of I (voltage drop!)

Kirchoff's Rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for EMFs:

$$\Delta V = V_b - V_a = \xi$$
 , if we go in the direction of I

Example

- Pick signs for I_1, ξ
- Junction rule
 - $I_1 = 1A + 2A = 3A$
- Loop rule (1)
 12V 6V 3A r = 0
 - -> r = 6/3 Ω = 2 Ω
- Loop rule (2) $12V - 6V - 1V + \xi = 0$ $-> \xi = -5V$

- Currents change with time
- Example: Charging a capacitor

- Currents change with time
- Example: Charging a capacitor

• What happens between t=0 and infinity?

Mar 15 2002

• What happens between t=0 and infinity?

Mar 15 2002

Charging capacitor

 $\xi - \frac{q}{C} - IR = 0$ Loop Rule $\xi - \frac{q}{C} - \frac{dq}{dt}R = 0$ note q(t=0) = 0, $I(t=0) = \frac{\xi}{R}$ $\Rightarrow \frac{dq}{dt} = -\frac{q}{PC} + \frac{\xi}{P}$ separate variables $\Rightarrow \frac{dq}{q - \xi C} = -\frac{dt}{RC} \quad \text{integrate}$ $\Rightarrow \int_0^Q \frac{1}{a - \xi C} dq = \int_0^t -\frac{dt}{BC}$ $\Rightarrow \ln(\frac{q-\xi C}{-\xi C}) = -\frac{t}{RC}$ exponentiate $\Rightarrow \frac{q-\xi C}{\zeta C} = \exp\left(-\frac{t}{RC}\right)$ $\Rightarrow q(t) = \xi C [1 - \exp\left(-\frac{t}{RC}\right)]$ $\Rightarrow I(t) - \frac{dq}{dt} = -\xi C \exp\left(-\frac{t}{RC}\right) \times \left(-\frac{1}{RC}\right)$ $=\frac{\xi}{D}\exp\left(-\frac{t}{DC}\right)$ $\Rightarrow V(t) = \frac{q(t)}{C} = \xi [1 - \exp(-\frac{t}{RC})]$

In-Class Demo

Discharging a capacitor

Discharging Capacitor

$$\begin{aligned} -\frac{q}{C} - IR &= 0 \quad \text{Loop Rule for } \xi = 0, q(t = 0) = Q_{final} = \xi C \\ -\frac{q}{C} - \frac{dq}{dt}R &= 0 \\ -\frac{dq}{q} &= \frac{dt}{RC} \\ \Rightarrow \int_{q_{final}}^{q} \frac{1}{q}dq &= -\int_{0}^{t} \frac{dt}{RC} \\ \Rightarrow \ln\left(\frac{q}{Q_{final}}\right) &= -\frac{t}{RC} \\ \Rightarrow \left[q(t) = Q_{final} \exp\left(-\frac{t}{RC}\right) \right] \\ &= \xi C \exp\left(-\frac{t}{RC}\right) \\ \Rightarrow I(t) &= \frac{dq}{dt} = \xi C \exp\left(-\frac{t}{RC}\right) \times \left(-\frac{1}{RC}\right) \\ &= -\frac{\xi}{R} \exp\left(-\frac{t}{RC}\right) \text{ note sign!} \\ V(t) &= \frac{q(t)}{C} &= \xi \exp\left(-\frac{t}{RC}\right) \end{aligned}$$

