Electricity and Magnetism

- Today: Review for Quiz #2
 - Conductors in E-Field/Potential
 - Capacitance/Capacitors
 - Dielectrics/Polarization
 - Current/Current Density
 - Resistance/Resistivity
 - DC circuits
 - Electric Power
 - Kirchoff's Rules
 - RC Circuits

Conductors in Electrostatics

- E = 0 inside (in Electrostatics)
 otherwise charges would move
- No charges inside
 - Gauss
- $E = \sigma/\epsilon_0$ perpendicular to surface – otherwise charges on surface would move
- Potential is constant on conductor

Charge Density

In-Class Demo: Application: Lightning rod -Biggest E near pointy tip!

Charge distribution and Geometry

$$V_{0} = \frac{Q_{0}}{4\pi\epsilon_{0}}\frac{1}{r_{0}} =$$

$$V_{1} = \frac{Q_{1}}{4\pi\epsilon_{0}}\frac{1}{r_{1}}$$

$$\Rightarrow Q_{0}/r_{0} = Q_{1}/r_{1} = 4\pi\epsilon_{0}V = \text{ const.}$$

$$E_i = \frac{\sigma_i}{2\epsilon_0} = \frac{Q_i}{4\pi\epsilon_0 r_i^2}$$
$$\Rightarrow E \propto \frac{1}{r} \propto \sigma$$

Charge and Potential

Charge and Potential

- For given geometry, Potential and Charge are proportional
- Define

- Measured in [F] = [C/V] : Farad
- C tells us, how easy it is to store charge on it (V = Q/C)

Capacitance

C bigger -> Can store more Charge!

Capacitor

- Def: Two conductors separated by insulator
- Charging capacitor:
 - take charge from one of the conductors and put on the other
 - separate + and charges

Parallel Plate Capacitor

Energy stored in Capacitor

$$W_{tot} = \int_{Q_{initial}}^{Q_{final}} V \, dq = \int_{0}^{Q} V \, dq$$
$$= \int_{0}^{Q} q/C \, dq = \frac{1}{C} \int_{0}^{Q} q \, dq$$
$$= \frac{1}{C} \frac{Q^2}{2}$$

- Work $W = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} C V^2$ needed to charge capacitor
- Energy conserved
- But power can be amplified
 - Charge slowly
 - Discharge very quickly

In-Class Demo

Where is the energy stored?

 Energy is stored in Electric Field

$$U_{stored} = \frac{1}{2}CV^2 = \frac{1}{2}(\epsilon_0 \frac{A}{d})(E \ d)^2$$
$$= \frac{1}{2}\epsilon_0 E^2 \ Volume + \mathbf{C}$$

- E² gives Energy Density:
- U/Volume = $\frac{1}{2} e_0 E^2$

Dielectrics

- Parallel Plate Capacitor:
 - $C = \varepsilon_0 A/d$
 - Ex. A = 1m², d=0.1mm
 -> C ~ 0.1μF
- How can one get small capacitors with big capacity?

In your toolbox:

Dielectric Demo

- Start w/ charged capacitor
- d big -> C small -> V large
- Insert Glass plate
- Now V much smaller
- C bigger
- But A and d unchanged !
- Glass is a Dielectric

Microscopic view

Microscopic view

Dielectric Constant

 $= E_0 + \chi E$

Dielectric Constant

- Dielectric reduces field E₀ (K > 1)
 E = 1/K E₀
- Dielectric increases Capacitance
 C = Q/V = Q/(E d) = K Q/(E₀d)
- This is how to make small capacitors with large C !

Electric Current

- We left Electrostatics
 - Now: Charges can move in steady state
- Electric Current I:
 - -I = dQ/dt
 - <u>Net</u> amount of charge moving through conductor per unit time
- Units:

-[I] = C/s = A (Ampere)

Electric Current

- Current I = dQ/dt has a direction
 - Convention: Direction of flow of positive charges
 - In our circuits, I carried by electrons
- To get a current:
 - Need mobile charges
 - Need | E | > 0 (Potential difference)

Resistivity

Resistivity

- Interplay of scattering and acceleration gives an average velocity V_D
- V_D is called 'Drift velocity'
- How fast do the electrons move?
 - Thermal speed is big: $v_{th} \sim 10^6$ m/s

– Drift velocity is small: $v_D \sim 10^{-3}$ m/s

 All electrons in conductor start to move, as soon as E > 0

Resistance

- Define R = V/I : <u>Resistance</u>
- $R = \rho L / A = f / (n_q q^2) L / A$

– for constant cross section A

- R is measured in \underline{Ohm} [W] = [V/A]
- Resistivity ρ is property of <u>material</u> (e.g. glass)
- Resistance R is property of <u>specific conductor</u>, depending on material (p) and geometry

Resistance

- $R = \rho L / A = f / (n_q q^2) L / A$
 - assuming <u>constant cross-section</u> A
- What if A = A(x)?
- Ex. hollow cylinder, R between inner and outer surface
- Slice into pieces with constant A

 $dR = \rho \ dr/A(r)$ = $\rho \ dr/(2 \ \pi \ r \ L)$

• Integrate

 $R = \rho/(2 \pi L) \ln(r_2/r_1)$

Ohm's law

$$V = R I$$

- Conductor is 'Ohmic', if R does not depend on V,I
- For real conductors, that's is only approximately true (e.g. R = R(T) and T = T(I))
- Approximation
 - valid for resistors in circuits
 - not valid for e.g. light bulbs

Electric Power

Use moving charges to deliver power

Power = Energy/time = dW/dt = (dq V)/dt = $dq/dt V = IV = I^2R = V^2/R$

Source of EMF

Electromotive Force EMF

- Def: $\xi = Work/unit$ charge
- ξ is '<u>Electromotive Force'</u> (EMF)
- Units are [V]

Internal Resistance

- Sources of EMF have internal resistance r
- Can't suppy infinite power

Resistors in series

$$V_{ac} = V_{ab} + V_{ac} = I R_1 + I R_2 = I (R_1 + R_2)$$

= I R_{eq} for R_{eq} = (R_1 + R_2)

Resistors in parallel

• Two capacitors in series

•
$$V_{14} = V_{23} + V_{56}$$

•
$$\mathbf{Q} = \mathbf{Q}_1 = \mathbf{Q}_2$$

•
$$V_{tot} = Q_1/C_1 + Q_2/C_2 = Q/(C_1 + C_2)$$

•
$$1/C_{tot} = 1/C_1 + 1/C_2$$

Inverse Capacitances add!

- Two capacitors in **parallel**
- $V_{56} = V_{23} = V_{14}$ (after capacitor is charged)
- $Q_1/C_1 = Q_2/C_2 = V_{14}$
- $\mathbf{Q}_{\text{tot}} = \mathbf{Q}_1 + \mathbf{Q}_2$
- $C_{tot} = (Q_1 + Q_2) / V_{14} = C_1 + C_2$
- Capacitors in parallel -> Capacitances add!

Kirchoff's Rules

- Junction rule
- At junctions:

 $\Sigma I_{iin} = \Sigma I_{jout}$

Loop rule

Around closed loops: $\Sigma \Delta V_j = 0$ ΔV for both EMFs and Voltage drops

Kirchoff's Rules

R

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for resistors:

 $\Delta V = V_b - V_a =$ - I R , if we go in the direction of I (voltage drop!)

Kirchoff's Rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for EMFs:

$$\Delta V = V_{b} - V_{a} = \xi$$
 , if we go in the direction of I

Example

- Pick signs for I_1 , ξ
- Junction rule
 - $I_1 = 1A + 2A = 3A$
- Loop rule (1)
 12V 6V 3A r = 0
 - -> r = 6/3 Ω = 2 Ω
- Loop rule (2) $12V - 6V - 1V - \xi = 0$ $-> \xi = 5V$

RC Circuits

- Currents change with time
- Example: Charging a capacitor

RC Circuits

- Currents change with time
- Example: Charging a capacitor

RC Circuits

• What happens between t=0 and infinity?

Mar 18 2002

In-Class Demo

Discharging a capacitor

