Electricity and Magnetism

Reminder

- Mutual- and Self-Inductance
- Inductance and AC circuits
 - Phase shift between I(t) and V(t)
- Today
 - RL circuits
 - Energy in B-Field

Inductance

Inductance

Mutal Inductance

- Coupling is symmetric: $M_{12} = M_{21} = M$
- M depends only on Geometry and Material
- Mutual inductance gives strength of coupling between two coils (conductors):

$$\xi_2 = - N_2 d\Phi_B/dt = - M dI_1/dt$$

- M relates ξ_2 and I_1 (or ξ_1 and I_2)
- Units: [M] = V/(A/s) = V s /A = H ('Henry')

In-Class Demo: Two Coils

- Signal transmitted by varying Field
- Coupling depends on Geometry (angle, distance)

Self Inductance

Circuit sees flux generated by it self

Def.: $L = N \Phi_{B}/I$

Self-Inductance

Example: Solenoid

Q: How big is L?

A: L = $\mu_0 N^2 A/L$

Self Inductance

- L is also measured in [H]
- L connects induced EMF and variation in current:

 $\xi = - L dI/dt$

• Remember Lenz' Rule:

Induced EMF will 'act against' change in current -> effective 'inertia'

• Delay between current and voltage

RL Circuits

Kirchoffs Rule: $V_0 + \xi_{ind} = R I \rightarrow V_0 = L dI/dt + R I$ Q: What is I(t)? Note: Note: Not an AC circuit A: I(t) = $V_0/R [1 - exp(-t/\tau)]$ with $\tau = L/R$

RL Circuits

RL Circuits

- Inductance leads to 'delay' in reaction of current to change of voltage V₀
- All practical circuits have some L and R – change in I never instantaneous

Then: Large L (30H) - Delay in I

In-Class Demo: Large L

- L counteracts change in current both ways
 - Resists increase in I when closing switch
 - Resists decrease in I when opening switch
 - 'Back EMF'
- That's what causes spark when switching off e.g. appliance, light

'Back EMF'

In-Class Demo: Square Wave V₀

RL as low-pass filter

- Again, like RC circuits, RL circuits act as lowpass filters
- Sharp edges/high frequencies are removed
 > In-Class Demo...
- RC circuit: Energy gets stored in C when Voltage switched on, released when Voltage switched off
- Energy storage in RL circuits?

Energy Storage in Inductor

• Power P = $|\xi I| = L dI/dt I = dU/dt$

->
$$dU = L dI I$$

-> $U = \frac{1}{2} L I^2$

• Where is the Energy stored? U/Volume = $\frac{1}{2} \frac{B^2}{\mu_0}$

Summary of Circuit Components

