Electricity and Magnetism

- Reminder
 - RL Circuits
 - Energy storage in Inductor
- Today
 - RLC circuits
 - Resonance in RLC AC circuit

Kirchoffs Rule: $V_0 + \xi_{ind} = R I \rightarrow V_0 = L dI/dt + R I$ Q: What is I(t)?

- Inductance leads to 'delay' in reaction of current to change of voltage V₀
- All practical circuits have some L and R – change in I never instantaneous

'Back EMF'

- L counteracts change in current both ways
 - Resists increase in I when connecting voltage source
 - Resists decrease in I when disconnecting voltage source
 - 'Back EMF'
- That's what causes spark when switching off e.g. appliance, light

In-Class Demo: Square Wave V₀

RL as low-pass filter

- Again, like RC circuits, RL circuits act as lowpass filters
- Sharp edges/high frequencies are removed
 > In-Class Demo...
- RC circuit: Energy gets stored in C when Voltage switched on, released when Voltage switched off
- Energy storage in RL circuits?

Energy Storage in Inductor

- Energy in Inductor
 - Start with Power P = ξ I = L dI/dt I = dU/dt
 - -> dU = L dI I-> $U = \frac{1}{2} L I^2$
- Where is the Energy stored?

 Example: Solenoid
 U/Volume = ½ B²/μ₀

RLC circuits

• Combine everything we know...

- Resonance Phenomena in RLC circuits
 - Resonance Phenomena known from mechanics (and engineering)
 - Great practical importance
 - video...

Summary of Circuit Components

R,L,C in AC circuit

- AC circuit
 - I(t) = I₀ sin(ω t)
 - $V(t) = V_0 \sin(\omega t + \phi)$

$$\rbrace$$
 same $\omega!$

- Relationship between V and I can be characterized by two quantities
 - Impedance $Z = V_0/I_0$
 - Phase-shift ϕ

Impedance $Z = V_0/I_0$

Apr 26 2002

Z and $\boldsymbol{\phi}$

- First look at impedance and phase-shift for circuits containing only R,C or L
- Then RLC circuit...

Z and ϕ : Capacitance C

Impedance Z = V / I = RPhase-shift $\phi = 0$

Z and ϕ : Capacitance C

Impedance Z = $1/(\omega C)$ Phase-shift $\phi = -\pi/2$ V lags I by 90°

Z and ϕ : Inductance L

Impedance $Z = \omega L$ Phase-shift $\phi = \pi/2$ / lags V by 90°

RLC circuit

• Solve L $d^2Q/dt^2 = -1/C Q - R dQ/dt + V$

- for AC circuit: $V = V_0 \sin(\omega t)$, $I = I_0 \sin(\omega t - \phi)$

- If $I = I_0 \sin(\omega t \phi)$ then
 - $Q(t) = -I_0 / \omega \cos(\omega t \phi)$
 - $dQ/dt = I_0 \sin(\omega t \phi)$
 - $d^2Q/dt^2 = I_0 \omega \cos(\omega t \phi)$

RLC circuit

 $V_0 \sin(\omega t) = I_0 \{ [\omega L - 1/(\omega C)] \cos(\omega t - \phi) + R \sin(\omega t - \phi) \}$

Solution (requires two tricks): $I_0 = V_0 / ([\omega L - 1/(\omega C)]^2 + R^2)^{1/2} = V_0 / Z$ $tan(\phi) = [\omega L - 1/(\omega C)] / R$

-> For $\omega L = 1/(\omega C)$, Z is minimal and $\phi = 0$ i.e. $\omega = 1/(LC)^{1/2}$ <u>Resonance Frequency</u>

