Electricity and Magnetism

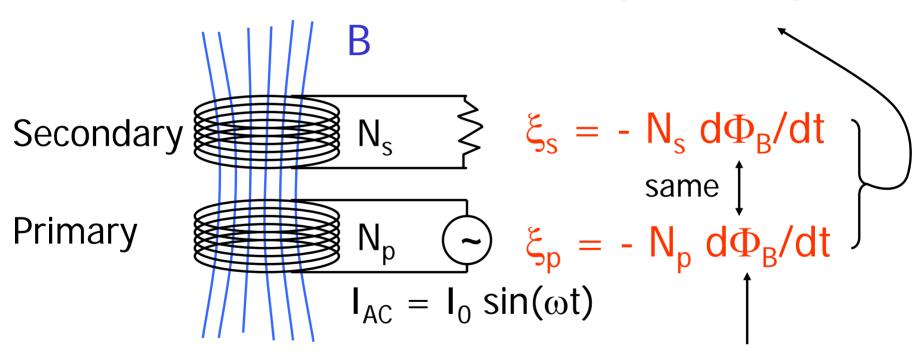
Review

- Self and mutual inductance
- Energy in B-Field
- LR circuit
- LRC circuits and Oscillations
- AC circuits
- Displacement current
- Maxwell's equations
- EM waves

Mutual Inductance

Transformer action

$$\xi_{\rm S}/\xi_{\rm p} = N_{\rm S}/N_{\rm p}$$



Flux through single turn

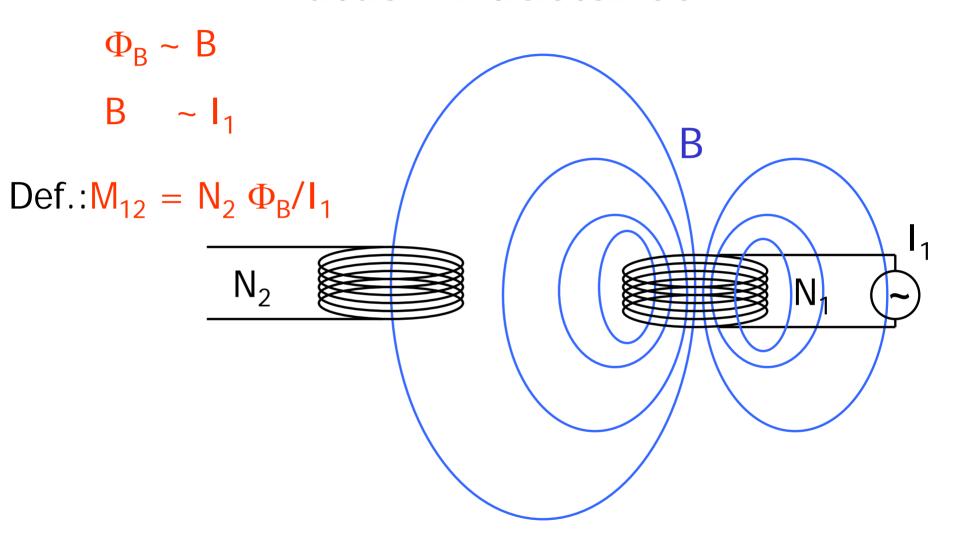
Mutual Inductance

Transformer action

$$\xi_{\rm s}/\xi_{\rm p}=N_{\rm s}/N_{\rm p}$$

- Transformers allow change of amplitude for AC voltage
 - ratio of secondary to primary windings
- Constructed such that Φ_B identical for primary and secondary
- What about general case of two coils?

Mutual Inductance



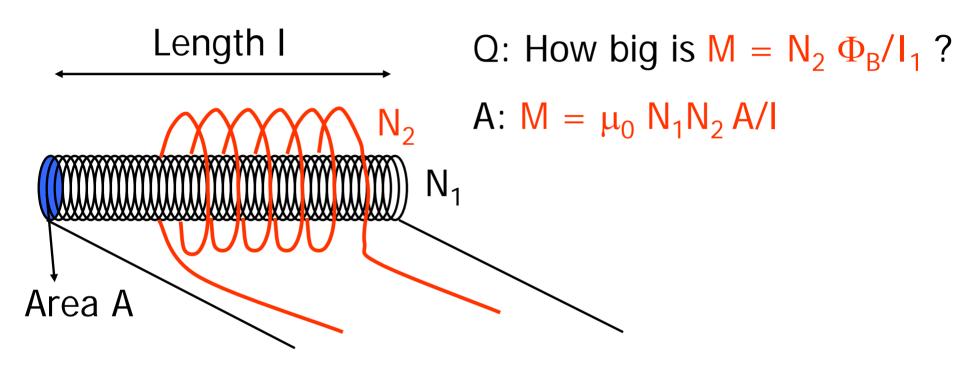
Mutal Inductance

- Coupling is symmetric: $M_{12} = M_{21} = M$
- M depends only on Geometry and Material
- Mutual inductance gives strength of coupling between two coils (conductors):

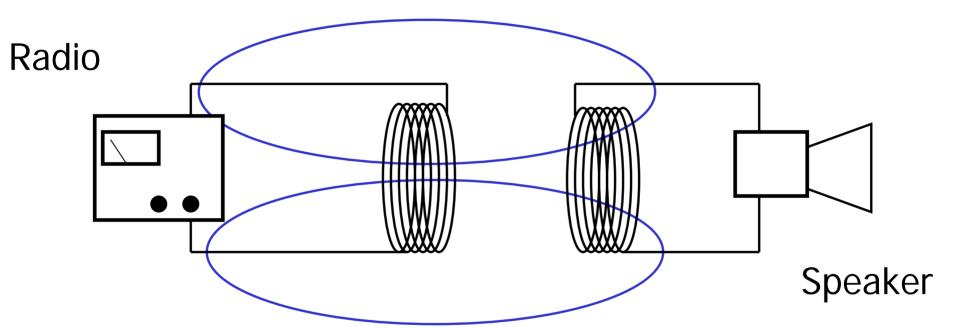
$$\xi_2 = - N_2 d\Phi_B/dt = - M dI_1/dt$$

- M relates ξ_2 and I_1 (or ξ_1 and I_2)
- Units: [M] = V/(A/s) = V s /A = H ('Henry')

Example: Two Solenoids

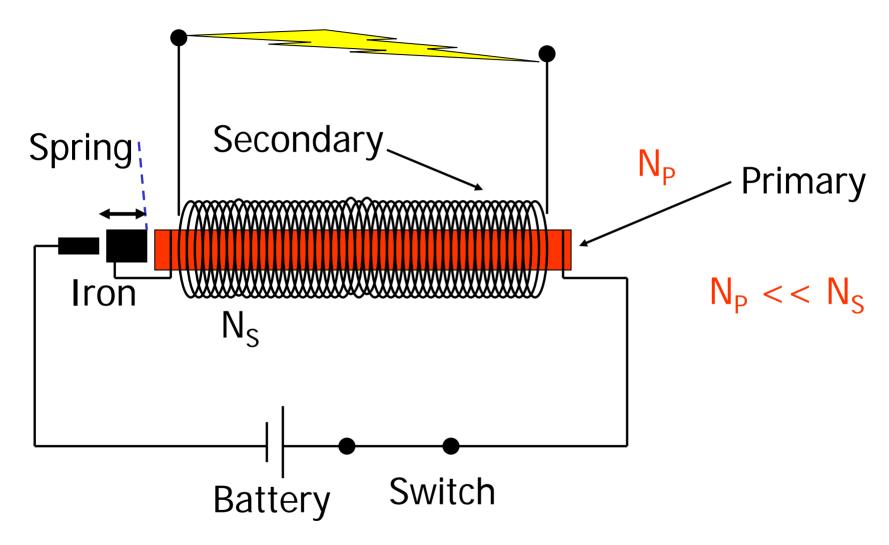


In-Class Demo: Two Coils



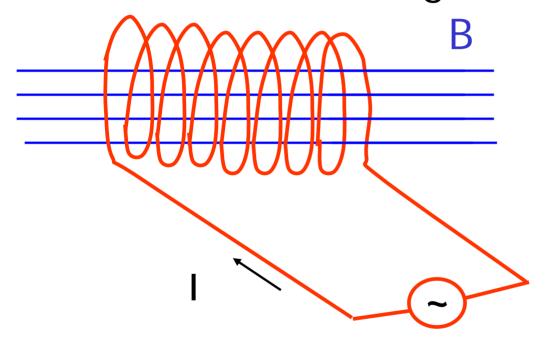
- Signal transmitted by varying B-Field
- Coupling depends on Geometry (angle, distance)

In-Class Demo: Marconi Coils



Self Inductance

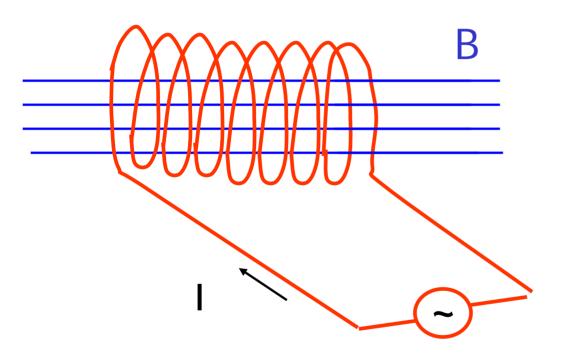
Circuit sees flux generated by it self



Def.: $L = N \Phi_B/I$

Self-Inductance

Example: Solenoid



Q: How big is L?

A: $L = \mu_0 N^2 A/L$

Self Inductance

- L is also measured in [H]
- L connects induced EMF and variation in current:

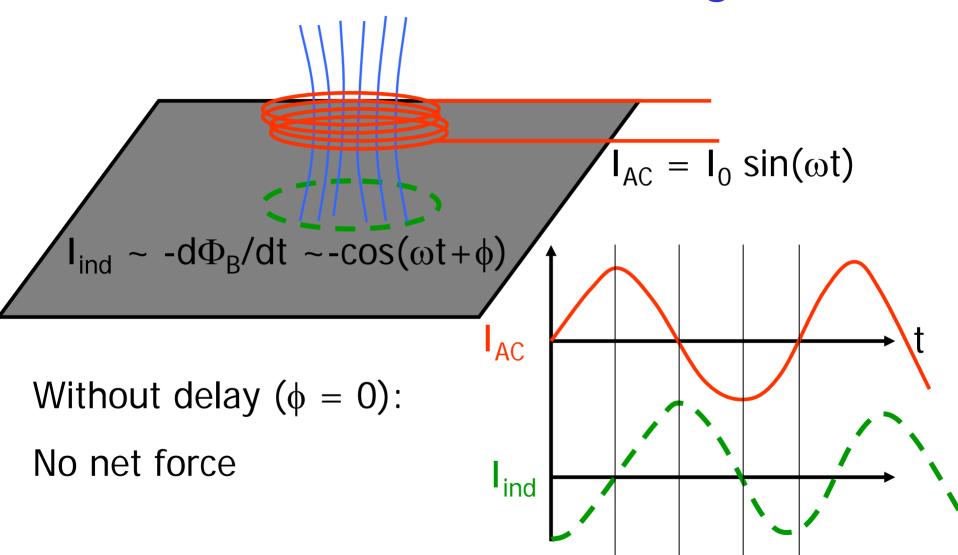
$$\xi = - L dI/dt$$

• Remember Lenz' Rule:

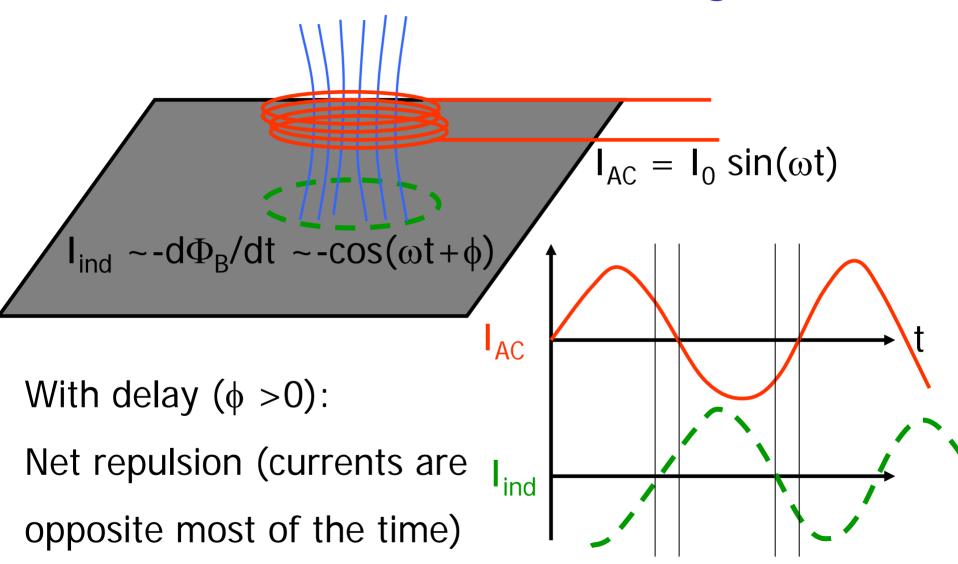
Induced EMF will 'act against' change in current -> effective 'inertia'

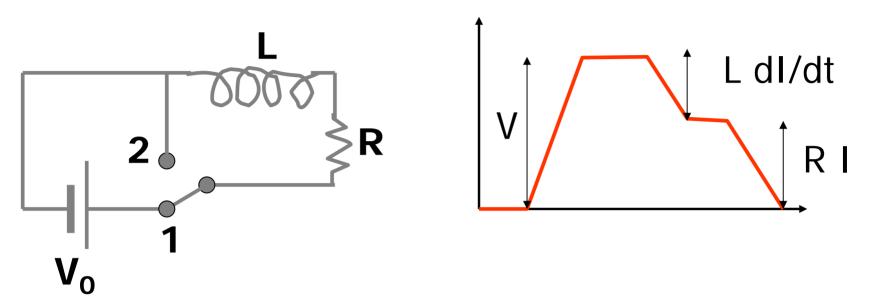
Delay between current and voltage

In-Class Demo: Levitating Coil



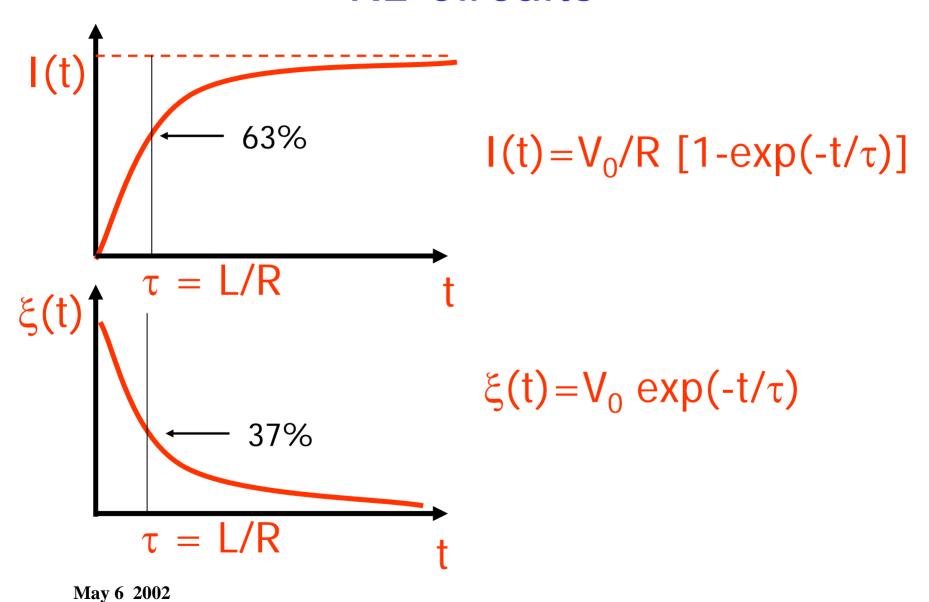
In-Class Demo: Levitating Coil





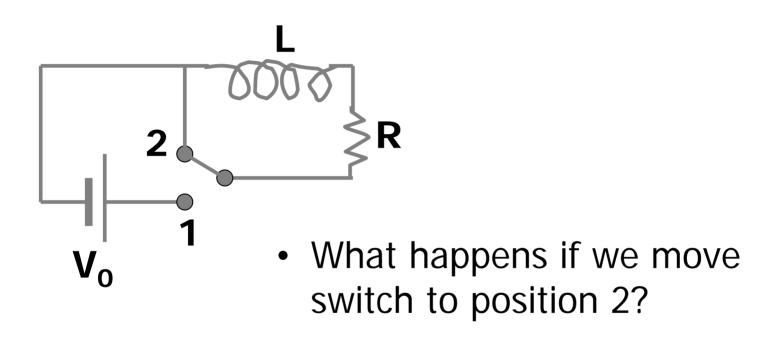
Kirchoffs Rule: $V_0 + \xi_{ind} = R I -> V_0 = L dI/dt + R I$

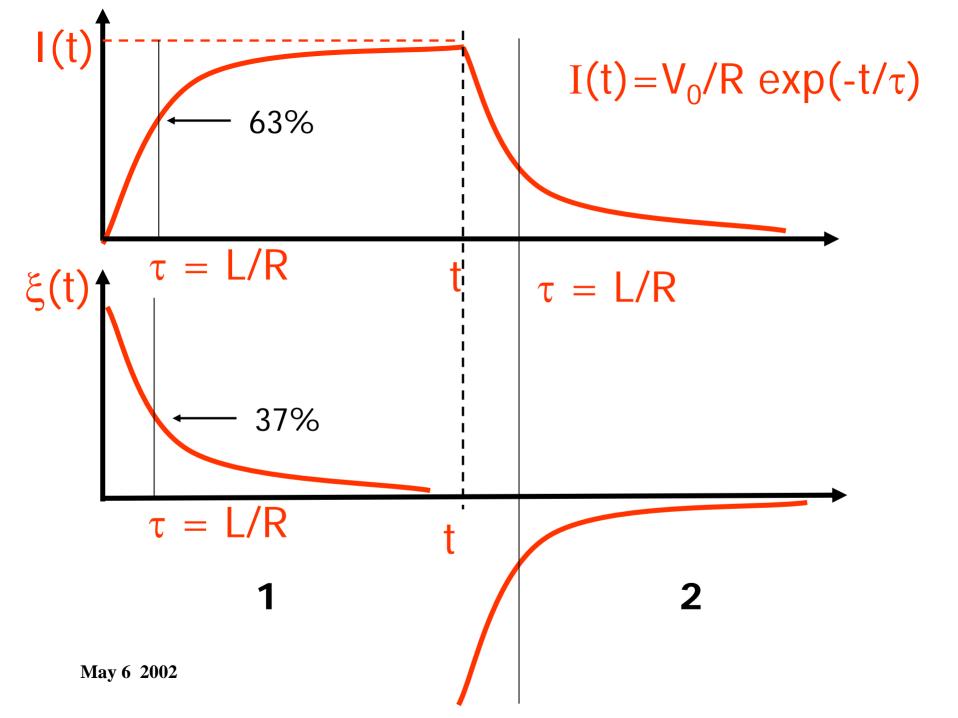
Q: What is I(t)?



- Inductance leads to 'delay' in reaction of current to change of voltage V₀
- All practical circuits have some L and R
 - change in I never instantaneous

'Back EMF'





- L counteracts change in current both ways
 - Resists increase in I when connecting voltage source
 - Resists decrease in I when disconnecting voltage source
 - 'Back EMF'
- That's what causes spark when switching off e.g. appliance, light

Energy Storage in Inductor

- Energy in Inductor
 - Start with Power $P = \xi I = L \frac{dI}{dt} I = \frac{dU}{dt}$
 - -> dU = L dI I
 - $-> U = \frac{1}{2} L I^2$
- Where is the Energy stored?
 - Example: Solenoid

U/Volume =
$$\frac{1}{2}$$
 B²/ μ_0

RLC circuits

Combine everything we know...

- Resonance Phenomena in RLC circuits
 - Resonance Phenomena known from mechanics (and engineering)
 - Great practical importance
 - video...

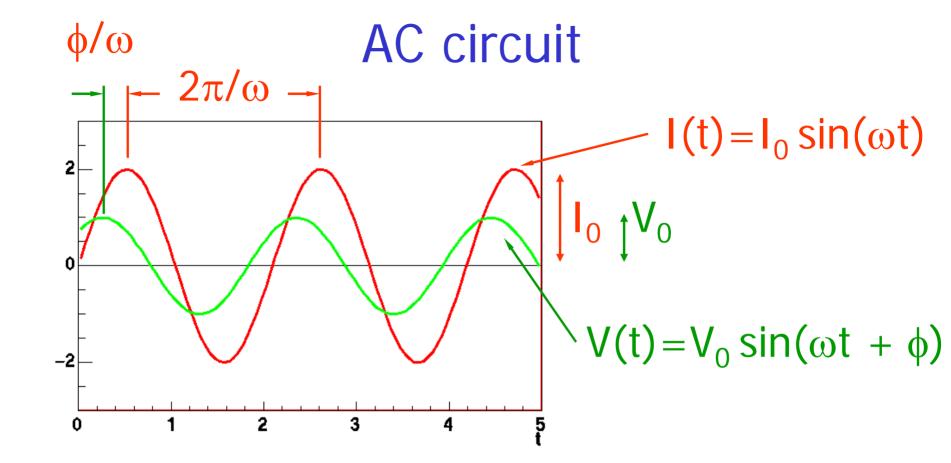
Summary of Circuit Components

R,L,C in AC Circuit

- AC circuit

 - $I(t) = I_0 \sin(\omega t)$ $V(t) = V_0 \sin(\omega t + \phi)$ same ω !

- Relationship between V and I can be characterized by two quantities
 - Impedance $Z = V_0/I_0$
 - Phase-shift φ



Impedance
$$Z = V_0/I_0$$

Phase-shift ϕ

First: Look at the components

$$V = I R$$

$$Z = R$$

 $\phi = 0$

V and I in phase

May 6 2002

$$Z = 1/(\omega C)$$
$$\phi = -\pi/2$$

V lags I by 90°

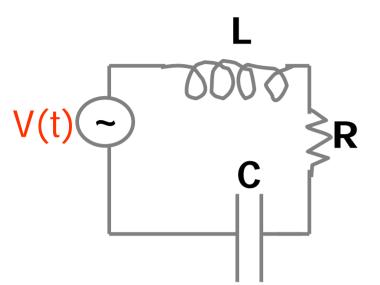
$$V = L dI/dt$$

$$Z = \omega L$$

 $\phi = \pi/2$

I lags V by 90°

RLC circuit

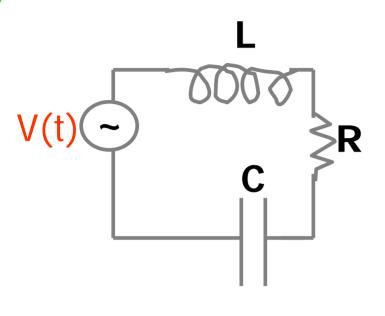


$$V - L dI/dt - IR - Q/C = 0$$

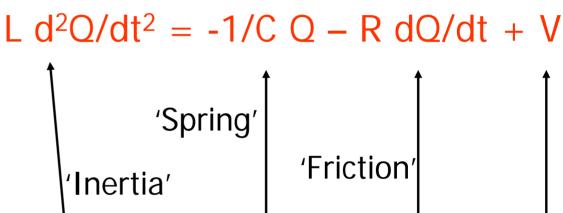
$$L d^2Q/dt^2 = -1/C Q - R dQ/dt + V$$

2nd order differential equation

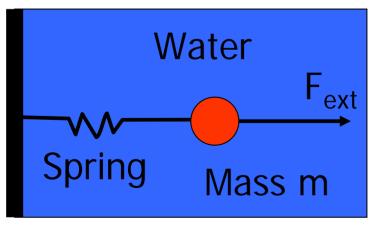
RLC circuit

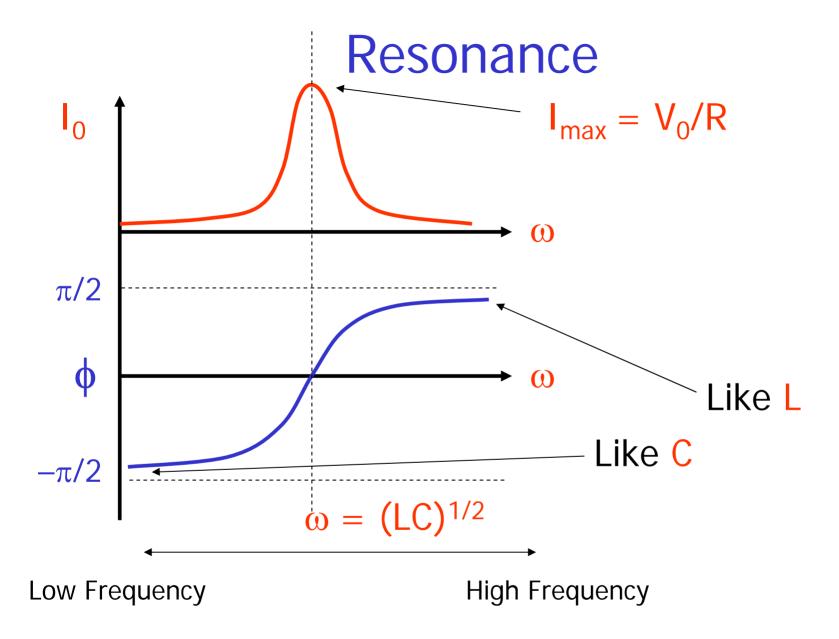


V - L dI/dt - IR - Q/C = 0



 $m d^2x/dt^2 = -k x - f dx/dt + F_{ext}$





RLC circuit

 $V_0 \sin(\omega t) = I_0 \{ [\omega L - 1/(\omega C)] \cos(\omega t - \phi) + R \sin(\omega t - \phi) \}$

Solution (requires two tricks):

$$I_0 = V_0/([\omega L - 1/(\omega C)]^2 + R^2)^{1/2} = V_0/Z$$

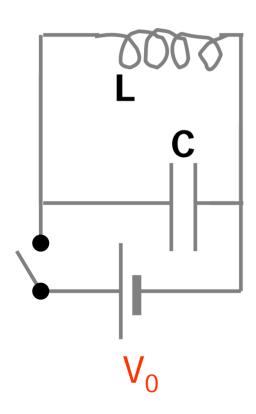
 $tan(\phi) = [\omega L - 1/(\omega C)]/R$

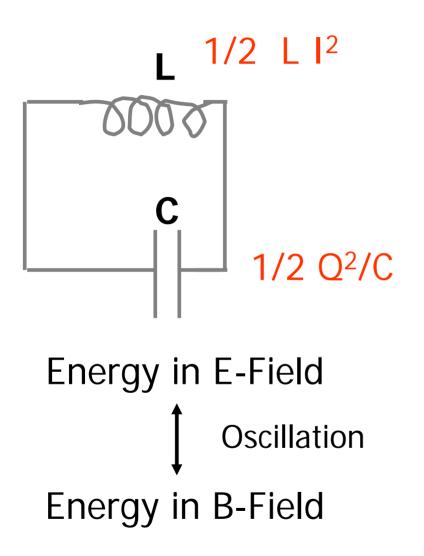
-> For $\omega L = 1/(\omega C)$, Z is minimal and $\phi = 0$ i.e. $\omega_0 = 1/(LC)^{1/2}$ Resonance Frequency

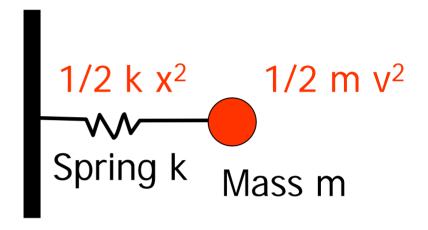
Resonance

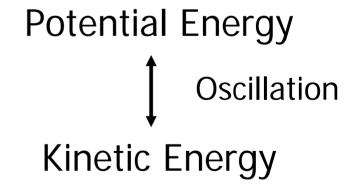
- Practical importance
 - 'Tuning' a radio or TV means adjusting the resonance frequency of a circuit to match the frequency of the carrier signal

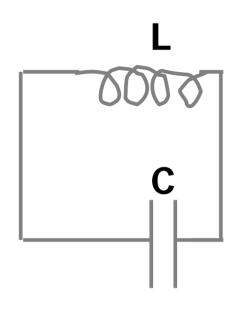
What happens if we open switch?





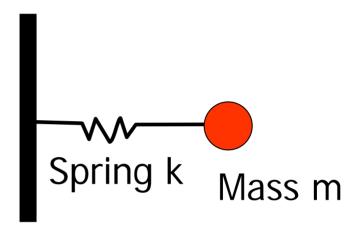






$$d^2Q/dt^2 + 1/(LC) Q = 0$$

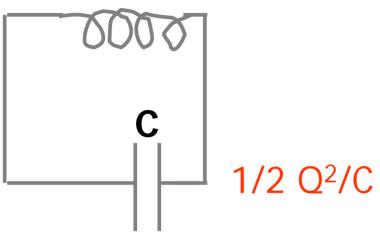
$$\omega_0^2 = 1/(LC)$$



$$d^2x/dt^2 + k/m x = 0$$

$$\omega_0^2 = k/m$$

L 1/2 L I²



Energy in E-Field

Oscillation

Energy in B-Field

 Total energy U(t) is conserved:

```
Q(t) \sim \cos(\omega t)
dQ/dt \sim \sin(\omega t)
U_L \sim (dQ/dt)^2 \sim \sin^2 t
U_C \sim Q(t)^2 \sim \cos^2 t
\cos^2(\omega t) + \sin^2(\omega t) = 1
```

Electromagnetic Oscillations

• In an LC circuit, we see oscillations:

Energy in E-Field

the second of the second

- Q: Can we get oscillations without circuit?
- A: Yes!
 - Electromagnetic Waves

Displacement Current

Ampere's Law broken – How can we fix it?



Displacement Current $I_D = \varepsilon_0 d\Phi_E/dt$

Displacement Current

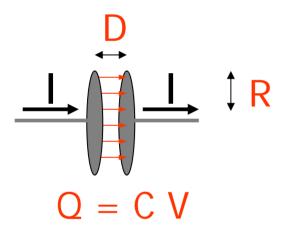
Extension of Ampere's Law:

$$Q = C V$$

Displacement Current $I_D = \epsilon_0 d\Phi_E/dt$ Changing field inside C also produces B-Field!

Displacement Current

• Example calculation: B(r) for r > R



$$-> B(r) = R^2/(2rc^2) dV/dt$$

Maxwell's Equations

$$\begin{split} \oint_{A_{closed}} \vec{E} \cdot d\vec{A} &= \frac{Q_{encl}}{\epsilon_0} \\ \oint_{L_{closed}} \vec{E} \cdot d\vec{l} &= -\frac{d\Phi_B}{dt} \\ \oint_{A_{closed}} \vec{B} \cdot d\vec{A} &= 0 \\ \oint_{L_{closed}} \vec{B} \cdot d\vec{l} &= \mu_0 I_{encl} + \mu_0 \ \epsilon_0 \frac{d\Phi_E}{dt} \end{split}$$

- Symmetry between E and B
 - although there are no magnetic monopoles
- Basis for radio, TV, electric motors, generators, electric power transmission, electric circuits etc

Maxwell's Equations

$$\oint_{A_{closed}} \vec{E} \cdot d\vec{A} = \frac{Q_{encl}}{\epsilon_0}$$

$$\oint_{L_{closed}} \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

$$\oint_{A_{closed}} \vec{B} \cdot d\vec{A} = 0$$

$$\oint_{A_{closed}} \vec{B} \cdot d\vec{l} = \mu_0 I_{encl} + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$$

- M.E.'s predict electromagnetic waves, moving with speed of light
- Major triumph of science

Electromagnetic Waves

- Until end of semester:
 - What are electromagnetic waves?
 - How does their existence follow from Maxwells equations?
 - What are the properties of E.M. waves?
- Prediction was far from obvious
 - No hint that E.M. waves exist
 - Involves quite a bit of math

Reminder on Waves

- Types of waves
 - Transverse
 - Longitudinal
 - compression/decompression

Reminder on Waves

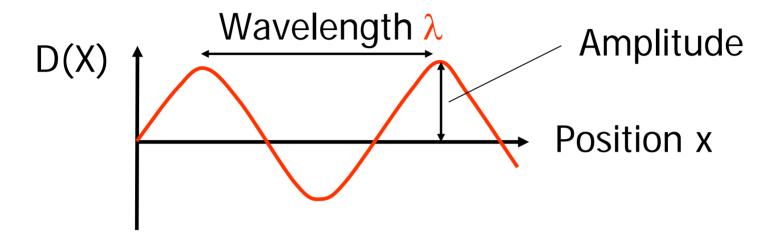
- For a travelling wave (sound, water)
 Q: What is actually moving?
- -> Energy!
- Speed of propagation: $v = \lambda$ f
- Wave equation:

$$\frac{\partial^2 D(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 D(x,t)}{\partial t^2}$$

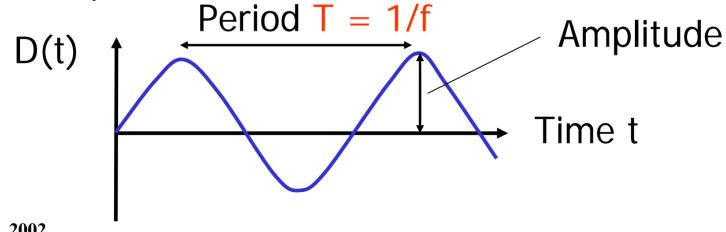
Couples variation in time and space

Reminder on Waves

At a moment in time:



At a point in space:



May 6 2002

Wave Equation

Wave equation:

$$\frac{\partial^2 D(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 D(x,t)}{\partial t^2}$$
 Couples variation in time and space

- Speed of propagation: $v = \lambda f$
- How can we derive a wave equation from Maxwells equations?

Wave Properties

- What do we want to know about waves:
 - Speed of propagation?
 - Transverse or longitudinal oscillation?
 - What is oscillating?
 - What are typical frequencies/wavelengths?

Differential Form of M.E.

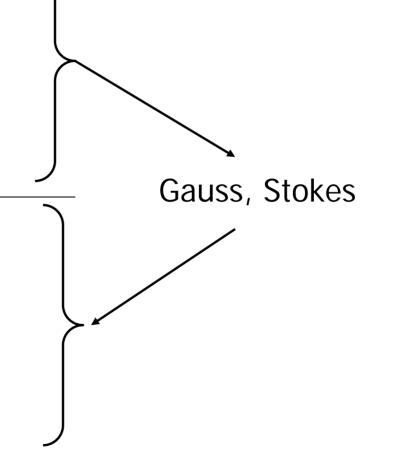
$$\begin{split} \oint_{A_{closed}} \vec{E} \cdot d\vec{A} &= \frac{Q_{encl}}{\epsilon_0} \\ \oint_{L_{closed}} \vec{E} \cdot d\vec{l} &= -\frac{d\Phi_B}{dt} \\ \oint_{A_{closed}} \vec{B} \cdot d\vec{A} &= 0 \\ \oint_{L_{closed}} \vec{B} \cdot d\vec{l} &= \mu_0 I_{encl} + \mu_0 \; \epsilon_0 \frac{d\Phi_E}{dt} \end{split}$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$



Differential Form of M.E.

Flux/Unit Volume
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$
 Charge Density
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \ \vec{j} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$
 Loop Integral/Unit Area Current Density

Maxwell's Equations in Vacuum

 Look at Maxwell's Equations without charges, currents

$$\vec{\nabla} \cdot \vec{E} = 0$$

$$\vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Now completely symmetric!

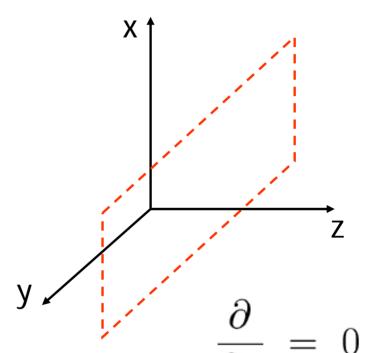
Maxwell's Equations in Vacuum

$$\vec{\nabla} \cdot \vec{E} = 0$$

Solve for a simple geometry

$$\mathbf{H}. \quad \vec{\nabla} \cdot \vec{B} = 0$$

III.
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

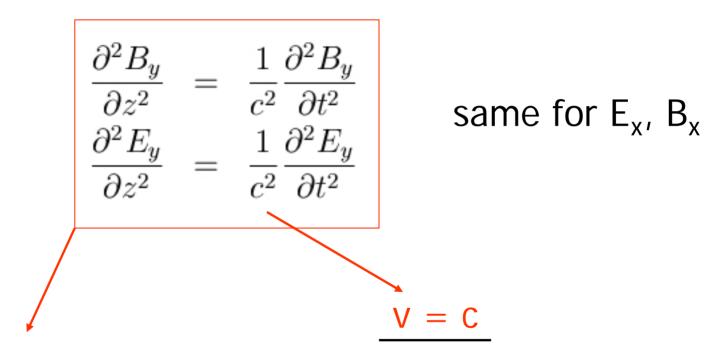


Allow variations only in z-direction:

$$\frac{\partial x}{\partial y} = 0$$

Electromagnetic Waves

We found wave equations:



E and B are oscillating!

Electromagnetic Waves

• Note: (E_x, B_y) and (E_y, B_x) independent:

$$E_{y}, B_{x}$$

$$\frac{\partial B_{x}}{\partial z} = \frac{1}{c^{2}} \frac{\partial E_{y}}{\partial t}$$

$$\frac{\partial B_{y}}{\partial z} = -\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial t}$$

$$\frac{\partial E_{x}}{\partial z} = -\frac{\partial B_{y}}{\partial t}$$

$$\frac{\partial E_{y}}{\partial z} = \frac{\partial B_{x}}{\partial t}$$

$$E_{x}, B_{y}$$

$$\frac{\partial E_{x}}{\partial z} = \frac{\partial B_{x}}{\partial t}$$

$$E_{x}, B_{y}$$

$$\frac{\partial E_{x}}{\partial z} = \frac{\partial B_{x}}{\partial t}$$

Plane waves

Example solution: Plane waves

$$E_y = E_0 \cos(kz - \omega t)$$

$$B_x = B_0 \cos(kz - \omega t)$$
with $k = \frac{2\pi}{\lambda}$, $\omega = 2\pi f$ and $f\lambda = c$.

- We can express other functions as linear combinations of sin,cos
 - 'White' light is combination of waves of different frequency
 - In-Class Demo...

Plane waves

Example solution: Plane waves

$$E_y = E_0 \cos(kz - \omega t)$$

$$B_x = B_0 \cos(kz - \omega t)$$
with $k = \frac{2\pi}{\lambda}$, $\omega = 2\pi f$ and $f\lambda = c$.

$$\frac{\partial B_x}{\partial z} = \frac{1}{c^2} \frac{\partial E_y}{\partial t}$$

$$\frac{\partial B_y}{\partial z} = -\frac{1}{c^2} \frac{\partial E_x}{\partial t}$$

$$\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}$$

$$\frac{\partial E_y}{\partial z} = \frac{\partial B_x}{\partial t}$$

$$\frac{\partial^2 B_y}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 B_y}{\partial t^2}$$
$$\frac{\partial^2 E_y}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$$

$$\Rightarrow \frac{|E_0|}{|B_0|} = \frac{k}{\omega} = c$$

E.M. Wave Summary

- E __B and perpendicular to direction of propagation
- Transverse waves
- Speed of propagation $v = c = \lambda f$
- |E|/|B| = c
- E.M. waves travel without medium

Typical E.M. wavelength

- FM Radio:
 - f ~ 100 MHz
 - $\lambda = c/f \sim 3m$
 - Antenna ~ O(m)
- Cell phone
 - Antenna ~ O(0.1m)
 - $f = c/\lambda = 3 \text{ GHz}$

Energy in E.M. Waves

- Remember:
 - Energy/Volume given by 1/2 ϵ_0 E² and 1/2 B²/ μ_0

Energy density for E.M. wave:

$$u = \varepsilon_0 E^2$$

What about power?