Electricity and Magnetism

- Today
 - More on waves
 - Energy Density
 - Power
 - Poynting vector
 - Intensity
 - MW experiment
 - Polarization

Maxwell's Equations in Vacuum

May 13 2002

Electromagnetic Waves

• We found wave equations:

E and B are oscillating!

May 13 2002

Plane waves

• Example solution: Plane waves

$$E_y = E_0 \cos(kz - \omega t)$$

$$B_x = B_0 \cos(kz - \omega t)$$

with $k = \frac{2\pi}{\lambda}, \omega = 2\pi f$ and $f\lambda = c$.

E.M. Wave Summary

- E | B and perpendicular to direction of propagation
- Transverse waves
- Speed of propagation $v = c = \lambda f$
- |E|/|B| = c
- E.M. waves travel without medium

Reminder on Waves

- For a travelling wave (sound, water)
 Q: What is actually propagating?
- -> Energy!
- Speed of propagation: $v = \lambda f$

E.M. Waves and You

- Transport of information
 - Visible light
 - Communication (Radio, TV, phone,...)– MW experiment
- Transport of energy
 - E.M. Energy radiated from Sun supports life on earth
 - Source of your Energy via Photosynthesis

Energy in E.M. Waves

- Remember:
 - Energy/Volume given by $\frac{1}{2} \epsilon_0 E^2$ and $\frac{1}{2} B^2/\mu_0$
- Energy density for E.M. wave:

 $u = \varepsilon_0 E^2$

• What about power?

Energy in E.M. Waves

• Power/Unit Area (instantaneous) $P/A = 1/\mu_0 E B$

Poynting Vector

- Not a typo: John Henry Poynting (1852-1914)
- Wave: Direction + Magnitude
- Summarize using vector: Poynting Vector

Intensity

• Frequency of waves is very high:

 λ ~ 500 nm (5x10⁻⁷ m) -> f = c/ λ ~ 6x10^{14} Hz

- Look at time average
- Def. Intensity: $I = \langle S \rangle = 1/(2\mu_0) E_0 B_0$
- [I] = Power/Area

Intensity

- Example:
 - Radio station
 - Power \sim 10kW, R \sim 20km
 - -> Surface A at R: $4\pi R^2 \sim 5x10^9 m^2$
 - -> I = P/A = 10kW/5x10^9 m^2 ~ 2 $\mu W/m^2$

That's why you need a receiver/amplifier to listen!

Intensity

- Example:
 - Sun
 - I on earth: 100 W/m² , R \sim 1.5x10^{11} m

 $-> P = I x A \sim 10^2 W/m^2 x 3x10^{23} m^2 \sim 3 x 10^{25} W$

- Very large amount of power
- Took until ~1940 to understand process of "nuclear fusion" (Hans Bethe)
- Weak Interaction
- Hydrogen fused into helium: Mass -> Energy

• Generate and detect E.M. waves

Exp AMP + diode + Antenna

Antenna + Exp EB

• What determines wavelength?

- In-Class Demo: Tuning fork
- 'Ping' contains all frequencies
- Fork (Antenna) pick out *one* frequency -> Resonance

- Antenna determines wavelength in MW experiment
- Antenna alse determines direction of E (and therefore B)
 - -> Polarization