
Massachusetts Institute of Technology 
Physics 8.03 Fall 2004 

Problem Set 8 
Due Friday, November 12, 2004 at 4 PM 

Reading Assignment 

Bekefi & Barrett pages 313-347, 356-385. This is a lot of reading! 

Problem 8.1 − Doppler shifts of EM radiation ⇒ a black-hole X-ray binary 

One star in an X-ray binary system (the donor, with mass m1) is only detected in the optical band. 
The other (the accretor, with mass m2) is only detected in X-rays. The orbits are circular, the radii 
are r1 and r2, respectively. The optical observers conclude from a close inspection of the optical 
spectrum that m1 is approximately 30 times more massive than our sun (it is a super giant). 

(a) Derive the orbital period T in terms of m1, m2, r1, r2, and  G. Consult your 8.01 notes 
and/or watch 8.01 Lecture #23 on OCW. 

A particular absorption line in the visible spectrum moves back and forth periodically (in a sinusoidal 
fashion) with a period of 5.6 days. The minimum and maximum observed wavelengths of the moving 
line are 499.75 nm and 500.25 nm, respectively. Assume that we observe the binary edge on. 

(b) What is the speed of the donor in its circular orbit? 

(c) Calculate r1. 

(d) Calculate r2. Your calculations will be greatly simplified if you set up your equations in terms 
of r2/r1. You will find a third order equation in r2/r1. Only one solution is real. There are 
various ways to find a decent approximation for r2/r1: (i) trial and error using your calculator, 
(ii) plot the function, (iii) MatLab. 

(e) Calculate the mass m2 of the accretor. 

Since the accretor must be compact (we observe a strong flux of X-rays) and because its mass is 
substantially larger than 3 times the mass of the sun (this is the maximum mass for a neutron 
star), it is very likely that the accretor is a black hole. A result somewhat similar to this simplified 
example was first published in 1972 by Bolton and independently by Webster and Murdin for the 
X-ray binary system Cyg X-1. 

Problem 8.2 − Transmission line 

A transmission line consists of two parallel wires each of radius a. The distance between the centers 
of the wires is b. 
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(a) Assuming that b � a, show that the capacity and inductance per unit length of the line are 
approximately given by 

πε0
C0 � 

ln(b/a) 

L0 � 
µ0 ln(b/a)
π 

Notice that the units of C0 are Farad/m (the same as ε0). The units of L0 are Henry/m (the 
same as µ0). 

(b) Using the results of part(a), compute the phase velocity v of a wave propagating on the line. 

(c) Obtain an expression for the characteristic impedance Z0. 

(d) The parallel wire transmission line is made from No. 12 wires (diameter 0.0808 inches) spaced 
0.50 inches apart. Calculate C0, L0, v  and Z0. 

Problem 8.3 − Coaxial cable 

A coaxial cable with characteristic impedance Z0 is terminated by a series combination of a resistor 
and a capacitor. If a harmonic voltage wave is incident from the left, a reflected wave will be set 
up by the load. The resulting total voltage on the line will have the form 

V (z, t) =  Vie
j(ωt−kz) + Vre

j(ωt+kz) 

(a) Write down an expression for the current I(z, t) on the line. 

(b) Find the relation between the complex voltage across the load, VL, and the complex current 
into it, IL. 
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(c) Find Vr in terms of Vi, ω, R, C,  and Z0 by matching the boundary conditions on voltage 
and current. 
Comment: Notice that it is complex, indicating that the load can change both the amplitude 
and the phase of the reflected wave. 

(d) Is your result in (c) consistent with the general relationship 

Vr ZL − Z0 = ? 
Vi ZL + Z0 

(e) Sketch the amplitude and the phase of the reflected voltage wave as a function of frequency 
ω for the special case R = Z0. 

Problem 8.4 − Rectangular waveguide 

A waveguide of rectangular cross section operates in the TEmn mode with 

Ey = E0y sin(kxx) cos(ky y) cos(ωt − kz z). 

The field distribution must satisfy the wave equation and boundary conditions at the faces of the 
guide tube. 

(a) Using the wave equation, develop the necessary relationship between the frequency ω and the 
various wave numbers. 

(b) Using boundary conditions at the faces x = 0  and  x = a, show what restrictions on the wave 
numbers are required. 

(c) Using boundary conditions at the faces y = 0  and  y = b, show what restrictions on the wave 
numbers are required. 

(d) Show that there is a minimum frequency for which propagation will occur and determine this 
for the TEmn mode. 

Problem 8.5 − Resonance cavity 

A copper box with dimensions as shown in the figure acts as a cavity resonator. The electric field 

Ez = E0 sin(kxx) sin(ky y) sin(ωt), Ex = Ey = 0  

is a possible solution of the wave equation for this case. 

(a) Find the lowest resonance frequency ω1 and the corresponding free space wavelength λ1. 

(b) Find the next-to-lowest resonance frequency ω2 and the corresponding free space wavelength 
λ2. 
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Problem 8.6 − Radiation pressure 

A perfectly reflecting mirror of mass M = 1 g hangs vertically from a wire of length L = 10  cm.  It  
is illuminated with a constant laser beam of intensity 30 kW (a powerful laser!), incident normal 
to the surface of the mirror. What is the displacement of the mirror from its equilibrium position? 
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