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8.03 Fall 2004 
Problem Set 2 Solutions 

Solution 2.1: Take home experiment # 1 – Influence of mass on the damping of a 
pendulum 

I (Igor Sylvester) made my pendulum about 65 cm long. I measured the time of 20 complete oscillations of 
the pendulum with the heavy weight (20Theavy = 33  ± 1 s) and the light weight (20Tlight = 32  ± 1 s). I also measured 
t1/2 five times for both weights and calculated the best estimate and spread. The result for the heavy weight is 
theavy = 150 ± 7 s (∼ 4.5% uncertainty) and for the light weight is tlight = 31  ± 1 sec (∼ 3% uncertainty). 1/2 1/2 

1. What is the relation between τ (= γ−1) and the time you measured, t1/2, that it takes for the amplitude to 
decrease by a factor of 2? The pendulum is described by 

x(t) +  γẋ(t) +  ω2¨ 0x(t) = 0, 

where x(t) is the displacement of the mass from equilibrium, γ = b/m and ω2 = g/L. We know that, in the 0 

under-damped case, this equation has the solution 

x(t) =  Ce−
γt 
2 cos (ωt − α) , 

where C and α are the initial amplitude and phase of oscillations, respectively and ω = ω2 − (γ/2)2. Then, 0 

the amplitude of the oscillations is Ce−
γt 
2 . If  t1/2 is the time the oscillator takes to half its amplitude, then 

Ce−
1 
2 γt1/2 = 

C 
2 

e −
1 
2 γt1/2 = 

1 
2 

1 
= ln  2  

2 
γt1/2 

2 ln 2  ⇒ t1/2 = 
γ 

= 2τ ln 2 

. 

2. How is an infinitesimal fractional change in the period related to an infinitesimal fractional change in the length? 

We know T = 2π l/g. Differentiating once gives 

2π dl 
dT = √ √ . 

g 2 l 

Dividing these two relations gives 

dT 1 dl 
= 

T 2 l
. 

3. How well, fractionally, could you determine the period T ? How accurately, in cm, would you have to reposition 
the mass to set T to the same value within your experimental ability to determine T ? 

If we can measure time with a watch with an accuracy of 1 s then we can measure 20 periods of oscillation 
within 20T ± 1 s. Hence, we can fractionally determine dT /T = 1/20. Using the relation derived earlier, we 
would need to position the weights within dl/l = 1/10 (10% accuracy). Then, we would need to adjust the 
pendulum’s length with an accuracy of about 7 cm. Remember that the length of my pendulum was about 66 
cm. 

4. What was the Q of the oscillator in each case? 
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Q = ω0/γ and ω = 2π/T ≈ 3.8 s−1 (3% uncertainty). Furthermore, γheavy = 0.0092 s−1 (∼ 4.5% uncertainty) 
and γlight = 0.045 s−1 (∼ 3% uncertainty). Assuming ω ≈ ω0, Qheavy ≈ 410 (∼ 5.5% uncertainty) and 
Qlight ≈ 85 (∼ 4% uncertainty). 

Note: if the fractional uncertainties in a and b are δa/a and δb/b respectively, then the fractional 
uncertainty in a/b is (δa/a)2 + (δb/b)2. Thus, a 3% uncertainty in a and 5% uncertainty in b 
result in a ∼ 5.8% uncertainty in a/b. 

5. Damping causes the actual frequency ω to fall below the undamped frequency ω0. Should you be able to measure 
this frequency (or period) shift when you change to the lighter mass? 

The damped frequency is 

ω = ω2 − (γ/2)2 ,0 

where ω2 = g/l and γ = b/m. Changing to the lighter mass decreases m, which in turn increases γ thus it 0 

decreases ω . However, in this experiment the values for γ are so small that the difference between ω0 and ω is 
negligible. For example, consider the following definition 

1 
ω = ω0 1 − 

4Q2 
. 

The two frequencies are related by the 1 − 1/4Q2 term. This factor is 0.9999993 for the heavy weight. 
Similarly, the factor is 0.999983 for the light weight. Hence, for this experiment, ω0 ≈ ω to a very high degree 
of accuracy. 

6. Were your damping times proportional to the mass? If they were not, do you think the discrepancy is due to 
the measurement accuracy or to other sources of damping? 

The weight of the heavy object, according to the instructions is 10 oz. This translates into a mass of 281 g. 
We did weigh the object and found a mass of 270 ± 1 g. The mass of the shell is 3 ± 1 g. That adds up to 
a total of 273 ± 2 g (0.7% uncertainty). The weight of the light object, according to the instruction is 1.5 oz. 
This translates into a mass of 42.2 g. We did weigh the object and found 42 ± 1 g. If we add the shell, we get 
45 ± 2 g (4.5% uncertainty). The mass ratio is therefore (273 ± 2)/(45 ± 2) = 6.07 ± 0.27 (4.5% uncertainty). 

The damping time ratio for the two masses is theavy/tlight = (150 ± 7)/(31 ± 1) = 4.84 ± 0.27. Clearly this is 
substantially smaller than the mass ratio. Why? 

Notice that the heavy object sticks out above the spherical shell. That means that the damp-
ing coefficient, b, for the heavy weight is larger than for the light weight. If we approximate the portion 
of the heavy weight that sticks out above the shell by a sphere, we can use the results for spherical ob-
jects. Professor Lewin discusses the drag (v and v2 terms) in detail in his lecture #12 (Fall 1999 – OCW) 
http://ocw.mit.edu/OcwWeb/Physics/8-01Physics-IFall1999/VideoLectures/index.htm 

For spheres, the damping coefficient (the one which is linear in v) is linearly proportional with the radius r. We  
made a guestimate of the radius of the approximated sphere that sticks out above the shell, and concluded that 
it is roughly 1/3 of that of the shell. Thus the corrected damping coefficient (shell plus the part that sticks out) 
is about 1.3 times that of the shell alone. 

If we take this into account, we find that the ratio of the damping times (which is the ratio of the reciprocals of 
γ for the two masses) becomes (mheavy/blight)/(mlight/bheavy) =  mheavy/1.3mlight ≈ 4.7. This clearly explains 
why the damping times were not linearly proportional to the masses. 

Solution 2.2: Driven oscillator with damping 
Part (a) 

An object of mass m is hung from a spring with spring constant 80 N/m. The resistive damping force on the 
object is given by −bv, where v is the velocity and b = 4  N  m−1 sec. So the constants for the damped motion 
are 

k −1γ = 
b 

= 20  s −1 ω0 = = 20  s 
m m 
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Let the oscillations of the spring be along the x axis. The spring force and damping force acting on the mass 
are 

Frestoring = −kx Fdamping = −bv = −bẋ

Newton’s 2nd law: 

xm¨ = Fnet = Frestoring + Fdamping = −kx − bẋ
k b 

ẍ = − x − ẋ
m m 

Hence the differential equation describing the motion of the mass is: 

b k
ẍ + ẋ + x = 0  

m m 

or 

d2x dx 
+ γ + ω2 x = 0 (1)odt2 dt 

The frequency and period of such damped oscillations are: 

γ2 √ −1ω2 = ω2 
0 − = 300 ⇒ ω = 10  3 s −1 = 17.3 s

4 

2π 2π 
Tperiod = = √ s ≈ 0.36 s 

ω 10 3 

Part (b) 

The equation of motion for this harmonically driven damped oscillator is: 

d2x 
+ γ

dx 
+ ω2 F0 sin(ωt) (2)0x = 

dt2 dt m 

The amplitude of oscillations in the steady state is given by the formula : 

A(ω) =  
F0/m 

[(ω2 
0 − ω2)2 + (γω)2]

1
2 

2/0.2 
= 

[(202 − 302)2 + (20 · 30)2] 
= 0.0128 m = 1.28 cm 

1
2 

(3) 

substituting values for ωo,F0,ω and γ. 

Part (c) 

In Fig. 1, A is the equilibrium level of the top end of the spring and B is the equilibrium level of the mass. 
X = X0 cos(ωt) is the harmonic displacement of the top end of the spring from its equilibrium position A, and  
x is the displacement of the spring from its equilibrium position. 

The spring force and the damping force acting on the mass are given by 

Frestoring = +k(X − x) Fdamping = −bv = −bẋ
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FIG. 1: Plot of spring with harmonic oscillations applied to the top end of the spring 

For X >  x  the spring force is in the + direction. Newton’s 2nd law: 

mẍ = Fnet = Frestoring + Fdamping = +k(X − x) − bẋ
k b

ẍ = (X − x) − ẋ
m m


d2x dx

+ γ + ω2 k 

0x = X0 cos(ωt) (4)
dt2 dt m 

This equation has the same form as Eq. 2. The harmonic displacement of the top end of the spring is equivalent 
to the application of a driving force with amplitude F0 = kX0. 

Part (d) 

The amplitude of the mass in steady state is: 

A(ω) =  
kX0/m 

(5)
[(ω2 − ω2)2 + (γω)2]0 

1
2 

substituting values ωo = 20  s−1 , k = 80 N/m, ω = 0, 30, 300 s−1 and γ = 20  s−1 . 

0.4/0.2 
A(ω) =  

[(202 − ω2)2 + (20ω)2]
1
2 

A(0) = 0.5 cm A(30) = 0.256 cm A(300) = 0.00223 cm (6) 

Solution 2.3: (French 4-6) Seismograph 
Part (a) 

The displacement of mass M relative to the earth is y and η is the displacement of the earth’s surface relative 
to the distant stars. Let x be the distance of mass M relative to the distant stars. 
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FIG. 2: Plot of seismometer before and during the earthquake 

Left Figure: The horizontal dashed line through E is the equilibrium position of the earth relative to the star. 
The horizontal dashed line through B is the equilibrium position of the mass relative to the star. It is also the 
equilibrium position of the mass relative to the seismometer. 

Right Figure: The dashed line through E, is the same as in the left figure. B is now a distance η farther away 
from the star than B (we indicate this with B’). The dashed line through B’ is no longer the equilibrium position 
of the mass relative to the star, but it is the equilibrium position relative to the seismometer. 

We can see from the figures that: 

x = l + y + h + η 

x = ¨ y¨ η + ¨

Newton’s 2nd law only applies to an inertial reference frame. The acceleration of M is x. However, the spring ¨
force and the damping force depend on the displacement and velocity relative to the Earth (i.e. relative to B’). 
The amount by which the length of the spring changes is y in both reference frames (that of the star and that 
of the seismograph). Thus the magnitude of the spring force is ky. Since it is assumed that the air inside the 
closed box of the seismograph follows the motion of the Earth, the damping force is −bẏ. Notice, if the air does 
not follow the Earth then the damping force would be −b(ẏ + η̇). Hence: 

M ̈ = −ky − bẏx 
k b

0 =  η̈ + ÿ + y + ẏ
M M 

d2η −η̈ = ¨ 0 0y = −y + γẏ + ω2 or 
d2y 

+ γ
dy 

+ ω2 

dt2 dt dt2 

where γ = 
b

ω2 = 
k 

(7)0 m m 

QED 

Part (b) 
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Steady state solution for y when η = Ccosωt. 

η = Ccos(ωt) 
d2η 

= −Cω2 cos(ωt)
dt2 

d2y dy
+ γ + ω2 

0y = Cω2 cos(ωt) (8)
dt2 dt 

To solve the equation using the complex exponential method we reframe the above equation as follows 

d2z dz iωt + γ + ω2 
0z = Cω2 e 

dt2 dt 

Let z = Aei(ωt−δ) be the solution to the above equation. Now y = Re(z). Substituting these in Eq. 8. 

i(ωt−δ) = Cω2 e iωt (−ω2A + iγωA + ω2 
0A)e 

iδ(ω2 
0 − ω2)A + iγωA = Cω2 e


Equating the real and imaginary parts of the equation we get:


(ω2 
0 − ω2)A = Cω2cosδ 

γωA = Cω2sinδ 

Therefore the steady state solution for y is as follows 

y = Acos(ωt − δ) (9) 

where 

Cω2 

A(ω) =  
[(ω2 − ω2)2 + (γω)2]0 

γω 

1
2 

(10) 

tan δ(ω) =  (11)
ω2 − ω2 

0 

Behavior of A(ω) for various values of ω 

ω → 0 A → 0 

ω → ω0 A → QC 

ω → ∞  A → C 

Part (c) 

The graph of the amplitude A of the displacement y as a function ω is shown in Fig. 3. 

Part (d) 
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0
= 15/600 = 0.025

FIG. 3: Graph of Amplitude A(ω) in units of C versus ω/ω0 [ Note: Q=ω0/γ is taken to be 2 ]

Period of the Seismograph Ts is 30s and Q is 2.

Ts = 2π/ω0 = 30s

ω0 =
2π

30
=

π

15
rad/s

γ =
ω0

Q
=

π/15
2

=
π

30
rad/s

Now the time period of oscillations of the earth’s surface is 20 min and the amplitude of maximum acceleration
is 10−9m/s2.

ω =
2π

Ts
=

2π

1200
=

π

600
rad/s

amax = Cω2 = 10−9 m/s2

C =
amax

ω2
= 3.6 × 10−5 m

Substituting values for ω, ω0, γ and C in the equation for amplitude A we get:

A(ω) =
Cω2

[(ω2
0 − ω2)2 + (γω)2]

1
2

A = 2.28 × 10−8 m
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Notice that C (amplitude of the Earth’s oscillations) is about 1600 times larger than A. It seems to us that
this is a very poorly designed seismometer. Values of A of the order of 2.3 × 10−8 m must be observable for
this tremor to be detected. If the frequency of the oscillations ω � ω0 the value of A → C (see Fig. 3). The
amplitude of the earthquake oscillations can then directly be read off the seismometer.

Part (e)

Problem 2.3 and 2.2 are very different. In Fig. 4, we show the amplitude A(ω) versus ω in Problem 2.2. Compare
this to the plot in Problem 2.3 as shown in Fig. 3
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FIG. 4: Plot of A(ω) vs. ω from Problem 2.2 [Note: ω0 = 20 Hz,γ = 20 Hz, and F0/m = 2 N/kg ]

This difference is best demonstrated by comparing their amplitudes at very low (near zero) and very high
frequencies. Let the amplitude in Problem 2.2 be A2.2 and the amplitude of the seismometer be Aseismo. Now

ω → 0 ⇒ A2.2 → F0

mω2
0

Aseismo → 0 (12)

ω → ∞ ⇒ A2.2 → 0 Aseismo → C (13)

ω → ω0 ⇒ A2.2 → F0

γmω0
Aseismo → QC (14)

As you can see, there is a major difference between harmonically displacing the top end of the spring and
harmonic oscillations of the earth.
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Solution 2.4: (French 4-10) Power dissipation 
Part (a) 

Let dW be the work done against the damping force in time dt. Now the work done is the dot product of the 
force and the distance over which it is applied, dW = Fanti−damping dx = bv · dx. Hence the instantaneous rate 
of doing work against the damping force is: 

W ork Done dW dx 
P = = = bv = bv2	 (15)

Time  Taken  dt dt 

QED 

Part (b) 

The equation of motion is of the form x = A cos(ωt − δ), hence the mean power dissipated can be calculated 
from part (a) as shown below: 

P ̄ = (bẋ2)|T = [b(−Aω sin(ωt − δ))2]|T 

1 1 
= bA2ω2[sin2(ωt − δ)]|T = bA2ω2 ( Since sin2(ωt − δ)|T = 2

)
2 

bA2ω2 

= 
2 

Part (c) 

The value of A for any arbitrary frequency is given by the expression shown below 

F0
2/m2 

A(ω) =  
F0/m 

2 0[(ω2 − ω2)2 + (γω)2] 
1 ⇒ A(ω)2 =

(ω2 − ω2)2 + (γω)2 
0 

bω2 

ωP ̄(ω) =  
2 ω2ω2 

F0
2/m2 

ω 0
)2]0 [( ω0 − ω0 

)2 + (  γ 
ω 

bF0
2 1 

= ω 
0m2 ( ω0 − ω0 

)2 + (  γ2ω2	
ω 0

)2 ω 

F0
2γ 1 

= 
2k ( ω0 −	 ω )2 + (  γ 

ω 0
)2 ω ω0 

1 
P ̄(ω) = 	

F0
2ω0 

ω 12kQ ( ω0 − ω0 
)2 + Q2 

(16) 
ω 

Hence the mean rate of power dissipation is shown to be same as in Eq. French 4-23. 

Solution 2.5: Transient behavior 

Part (a) 

The period of free oscillations can be measured off the graph to be T0 approximately 4 sec, hence 

1 1 
ν0 = ≈ ≈ 0.25 Hz  ω0 ≈ 0.5π rad/s	 (17)

T 0 4 

Part (b) 
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The homogenous solution is given by x(t) =  x(t = 0)e−γt/2 cos(ωt + φ). To determine we use the envelope of the 
exponential decay. A couple of points on the exponential decay envelop are measured to be x(t ≈ 0.7) ≈ −10.5 
m and  x(t ≈ 3.0s) ≈ +6.2 m.  Now  

� x(t = 3.0 s) �� = e −2.3γ/2 =
6.2 � x(t = 0.7 s) � 10.5 

2 
� 

10.5 
� 

⇒ γ = ln ≈ 0.46 rad/s 
2.3 6.2 

Hence the damping coefficient b = mγ ≈ 0.46 Ns/m. As pointed out by Professor Ketterle, a much better way 
would be to subtract the steady state solution from the total curve and then to derive γ from the decay of the 
remaining curve. That would certainly give a more accurate value. However, we did not do that - sorry. This 
may explain why our value for γ is more than 20% off the value that was used to generate the curve; see part 

D
is

p
la

c
e

m
e

n
t 

(m
) 

(e) and Figure 5. 

Part (c) 

The frequency of the driving force can be measured quite accurately with the period of the steady state solution. 
The period appears to be 5 cycles in last 5 seconds or ν ≈ 1 Hz . Hence 

1 
T = ≈ 1 s ω = 2πν ≈ 2π rad/s (18)

ν 

The frequency of the driving force is ∼ 1 Hz. It is four times larger than the frequency of the free oscillations. 

γ = 0.667, ω = 2 π 1, F
0
 = 100, φ = π 0.5, ω  = 2 π 0.25

0
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FIG. 5: Plot of position of the mass m as a function of time t showing the various components of its motion 
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Part (d) The amplitude of the steady state response of the oscillator can be measured quite accurately 

A(ω) =  � 
F0/m 

= 2.5 m 
(ω2 − ω2)2 + (γω)2 0 

from which we can calculate the amplitude of the driving force 

F0 = mA(ω) (ω2 − ω2)2 + (γω)2 0 

= 1  × 2.5 16π4(0.252 − 12)2 + 4π2(0.462 × 12) 
≈ 93 N 

� 90 N (19) 

Part (e) 

We find the initial phase of the driving force by extending the steady-state part back to t = 0. The zero 
crossings in the steady state solution are at t = 10, 15 and 20 sec. Thus it also crosses zero at t=0 sec, and the 
steady state displacement starts off in the positive direction. We also know that when ω � ω0, the displacement 
x(t) is  π radians out of phase with the driving force F (t) =  F0 cos(ωt + φ). Thus at t = 0 the driving force 
must be zero and must increase in the negative direction. Thus 

F (t = 0) =  F0 cos φ = 0  F (t = +ε) < 0 

π ⇒ φ ≈ radians (20)
2 

Fig. 5 shows a graph of the transient (green), the steady state (red) and the composite (blue). At the top of the 
plot we list the input parameters that we used in preparing this problem. Compare them with the approximate 
values that we derived from the blue plot. We were dead on in the case of ω, ω0 and φ. We were within 10% of 
F0, but our estimate of γ was off by more than 20%. 

Solution 2.6: Driven RLC circuit 
Part (a) 

Potential differences across the resistor and the capacitor are as follows: 

dq q
VR = IR  = R VC = 

dt C 

Faraday’s Law states 

− → dφB→ −
E · dl = − 

dt 

� − →→ −The inductor has no ohmic resistance. Thus the E · dl in going through the wire of the inductor from one 
end to the other end is zero. The closed loop integral going into the direction of the current then becomes 
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dI 
IR  + VC − V0 cos(ωt) =  −L 

dt 

Notice: Kirchhoff’s “volage” rule does NOT hold as the E field here is non-conservative. Substituting I = dq/dt 
and dI/dt = d2q/dt2, the differential equation for charge on the capacitor is 

d2q R dq 1 q 
= 

V0 cos(ωt)+ + ⇒ 
d2q 

+ γ
dq 

+ ω2 V0 cos(ωt) (21)0q = 
dt2 L dt L C L dt2 dt L 

R 1 
= γ ω0 = √ 

L LC 

We differentiate the above equation to find the equation for current I 

d2I dI 
+ γ + ω2 V0 

0I = − ω sin(ωt) (22)
dt2 dt L 

Part (b) 

To solve for q(ω, t), we use the fact that Eq. 21 has the same form as Eq. 2 in Problem 2.2(b). Hence the solution 
is: 

q(ω, t) =  q0(ω) cos(ωt − δ) (23) 

q0(ω) =  
V0/L 

[(ω2 
0 − ω2)2 + (γω)2]

1
2 

γω 
tan δ(ω) =  

ω2 − ω2 
0 

Part (c) 

We calculate I(ω, t) by differentiating our results from above for q(ω, t) :  

I(ω, t) =  −ωq0(ω) sin(ωt − δ) =  −I0(ω) sin(ωt − δ) (24) 

ωV0/L|I0(ω)| = 
[(ω2 

0 − ω2)2 + (γω)2]
1
2 

γω 
tan δ(ω) =  

ω2 − ω2 
0 

The equation for I0(ω) is often written in the form 

V0
I0 = � (25) 

R2 + (XL − Xc)2 

where XC = 1/ωC and XL = ωL are the capacitive and inductive reactances respectively. 
At resonance, delta = π/2. That means that the driving voltage is IN PHASE with the current. 
Because cosωt = −sin(ωt − π/2). As menioned in lectures, at resonance, the circuit behaves as if 
there is no C and no L. Thus Ohm’s Law is at work which dictates that the voltage and the current 
are in phase. Consequently, for low values of ω when δ = 0, the current is leading the voltage by 
a phase angle π/2 which corresponds to a quarter of a period (the capacitor rules!), and for very 
high ω, the current is lagging the driving voltage by a quarter of a period (the self-inductor rules!). 
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Part (d) 

Substituting values for V0 , R, L , and  C; the plot for current I as a function of ω is shown in Fig. 6. 

Part (e) 

We can see from Eq. 25 that for the current I0 through the circuit to be maximum, Z = R2 + (XL − Xc)2 
has to be minimized. Thus 

1 
XL = XC ⇒ ωL = 

ωC 
1 

ωImax  = √ = ω0 = 3.162 × 104 rad/s (26)
LC 

At frequency ωImax  = 3.162 × 104 rad/s, the current through the circuit is maximum.


The quality factor Q for the system is


R L 1 
γ = = 500 rad/s Q = 

ω0 = √ = 63.2 (27)
L γ R LC 

The high value of Q = 63.2 explains the sharp peak around ω = 3.162 × 104 rad/s. 

Part (f) 

The plot for charge q as a function of ω is shown in Fig. 7. 

Part (g) 

To find the ω at which q0 is maximum, we differentiate its value from Eq. 23 with respect to ω and equate it to 
0 

� � 
d[q0(ω)] 

= 0  =  
d V0/L 

dω dω [(ω2 − ω2)2 + (γω)2]0 

V0 4ω(ω2 − ω2 
0) + 2ωγ2 

0 =  − 
2L [(ω2 − ω2)2 + (γω)2]0 

3
2

1 
2 

⇒ 4ω(ω2 − ω2 
0) =  −2ωγ2 

1 
ωqmax = 

2
(2ω2 − γ2) = 3.160 × 104 rad/s (28)0 

At frequency ωqmax = 3.160 × 104 rad/s, the charge on the capacitor is maximum. 

The frequency ωqmax at which charge q0 on the capacitor is a maximum, is only slightly lower than the frequency 
ωImax  at which the current I0 through the circuit is maximized. The difference is very small as Q is very high 
(∼ 63). 
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Plot of current I as a function of ω 
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FIG. 6: Plot of current as a function of ω [ V0 = 3  V,  R = 50  Ω,  L = 100  mH,  and  C = 0.01 µF ]  
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Plot for charge q
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FIG. 7: Plot of charge as a function of ω [ V0 = 3  V,  R = 50  Ω,  L = 100  mH,  and  C = 0.01 µF ]  
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