
MIT 8.03 Fall 2004 – Solutions to Problem Set 4 

Problem 4.1 (French 7-12) – Travelling pulse 

(a) Since the pulse is travelling to the right, the piece of string on the right side of the peak is “rising” and 
the piece on the left is “falling.” The transverse velocity of the peak is zero but it has the maximum 
acceleration (see the figure below). 
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(b) The pulse shape is 
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We can model the pulse with a Gaussian function. That is, the pulse resembles 

y(η) =  Ae−αη2 
, 

where η = x − vt, A = 0.1 m  and  α = 4  m−2 . The above graph of the pulse shape is actually this 
function. The transverse velocity is then 

∂y 
= −2Aαηe −αη2 ∂η 

∂t ∂t 

= 2Aαvηe−αη2 
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We can find the maximum transverse velocity at t = 0 by requiring that 

∂2y 
∂t2 

= 0  
t=0 

2Aαv2 e −αη2 � 
2αx2 − 1max = 0  

⇒ 2αx2 − 1 = 0max 

1 
xmax = 

2α
. 

Hence, the maximum transverse velocity at t = 0  is  

∂y 
vy | = max ∂t x=xmax 

α −1/2= 2Av e
2 

≈ 6.86m/s. 

(c) The mass density of the string is µ = 1/50 kg/m. Then, the tension in the string is T = µv2 ≈ 32 N. 

(d) Any wave traveling in the negative x direction with a speed v can be described as 

y(x, t) =  f(η) 
= f(kx + ωt), 

where f(η) is the shape of the wave, k is the wave number and ω is the angular frequency. For sinusoidal 
waves: 

y(x, t) =  A sin(kx + ωt + φ), 

where A is the amplitude of the wave and φ is the phase of the sinusoid. Furthermore, a wavelength of 
5 m implies k = 2π/λ = 0.4π m−1 . Since this wave is traveling on a string, it must obey the relation 
ω = kv = 16π s−1 . Therefore, the equation describing the wave is 

−1y(x, t) = (0.2 m)  sin  0.4π m x + 16π s−1 t + φ , 

where φ is unknown since the phase of the wave was unspecified. 

Problem 4.2 (French 7-13) – Travelling pulse 

(a) The sketch of y(x, 0) is shown on the next page. 

(b) Remember that any pulse or wave traveling in the positive x-direction can be expressed as y(ωt − kx), 
for k ≥ 0 and that its speed of propagation is v = ω/k. Then, letting z = ωt − kx and expressing 
y(x, t) as a function of z, 

b3 

y(z) =  . 
b2 + z2 

Hence, z = 2x − ut. Therefore, for positive values of u, the pulse travels in the positive x direction 
with a speed v = u/2. 
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y(x,0) vs. x 
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(c) 

vy (t = 0)  =  
∂y 
∂t t=0 

2b3u(2x − ut)
= 

(b2 + (2x − ut)2)2 
t=0 

4b3xu 
= 

( b2 + 4x2)2 
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y(x,t) vs. x 
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Problem 4.3 – Pulse reflection at a boundary � √ 
(a) The propagation speed in string 1 is v1 = T/µ1 = 10  2 m/s ≈ 14 m/s and in string 2, v2 = 

T/µ2 = 10  2/3 m/s ≈ 8 m/s. Then, the reflection coefficient is 
√ 

v2 − v1 3 − 3 1 
R = 

v1 + v2 
= √ 

3 + 3  
≈ −

4 
, 

and the transmition coefficient is 
√ 

2v2 2 3 3 
T = 

v1 + v2 
= √ 

3 + 3  
≈ 

4 
. 

(b) The following graph shows the incident, reflected and transmitted waves when the pulse peak arrives 
at the junction (x = 0). Note that the reflected pulse is upside down and flipped right to left. Also, 
the transmitted pulse is narrower. Keep in mind that only the dashed black line is physical. The other 
lines (in red, green and blue) are there only for illustrative purposes. 

4 



1 

0.8 

0.6 

0.4 

0.2 

0


−0.2


−0.4


Incident 
Transmitted 
Reflected 
Total 

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 

The graph on the next page shows the total deformation of the string when the peak is at x = 0.  
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(c) The shape of the string at time t = (5  m)/v1 = 0.357s is shown below. 
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String at t=0.357s (junction is at x=0) 
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(d) The sharp cusps of the pulse are unphysical because it leads to an infinite potential energy of the 
string. Recall that the potential energy density of a string is 

dU 1 ∂y
= 

dx 2 
T 

∂x
. 

Since the pulse is not smooth at the cusp the slope is infinite. Therefore, the potential energy of the 
string is infinite. 

Alternatively, we could argue that, at any point in the string, the forces must cancel because each 
point has an infinitesimally small mass. We need vanishing forces in the presence of a vanishing mass 
so the acceleration remains finite. The cusps in the string cause an infinite acceleration since the forces 
at those points do not cancel. 

Problem 4.4 – Boundary conditions on a string 

(a) The following sketch shows the forces acting on the hoop. 

Ffriction 

Velocityθ 

T 

Applying Newton’s second law gives 

F = ma 

∆mÿ = −T sin θ + Ffriction. 
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Assuming that oscillations are small, 

∂y
∆mÿ = −T 

∂y − b . 
∂x ∂t 

Since the mass of the hoop is negligible, 

−T 
∂y − b

∂y 
= 0  

∂x ∂t 

⇒ 
∂y 
∂x 

= − 
b 
T 

∂y 
∂t 

At the hoop ∀t. 

(b) Let’s take the superposition of an incident wave and a reflected wave 

y(x, t) =  f(x − vt) + g(x + vt) . � �� � � �� � 
Incident, known. Reflected, unknown. 

We now use the boundary condition at the hoop to solve for g(x + vt). The respective derivatives are 

∂y 
= f ′(x − vt) +  g ′(x + vt)

∂x 
∂y 

= v (−f ′(x − vt) +  g ′(x + vt)) . 
∂t 

If the hoop is at x = 0, then 

f ′(−vt) +  g ′(vt) =  
bv 

(f ′(−vt) − g ′(+vt))
T 

g ′(vt) =  
bv/T − 1 

f ′(−vt). 
bv/T + 1  

Letting η = vt and integrating with respect to η, 

g ′(η) dη = 
bv/T − 1 

f ′(−η) dη 
bv/T + 1  

bv − T 
g(η) =  (−1)f(−η)

bv + T 
T − bv 

g(η) =  f(−η). 
T + bv 

Note that the integration constant must equal zero for the limiting cases discussed in the next part to 
hold. 

(c) For b = 0, the hoop behaves as a free end. Our result gives g(η) =  f(−η), which is correct since the 
wave is reflected without flipping. 

For b → ∞, the hoop behaves as a clamped end. Our result gives g(η) =  −f(−η), which is correct 
since the wave is reflected flipped over. 

Note that for the special case when b = T/v, g(η) = 0. Hence, there is no reflected wave. This is 
known as a matched load. 

Problem 4.5 – Boundary conditions in a pipe 
The wave equation for the over-pressure p(z, t) inside a pipe is 

∂2p 
= 

ρ0 ∂
2p 

. 
∂z2 κ ∂t2 
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The solution to this equation is 

p(z, t) = [A cos kz + B sin kz] cos  ωt. 

Since the pipe is open at both ends (remember, p is over-pressure), 

p(0, t) = 0 

A cos ωt = 0 

⇒ A = 0 

and 

p(L, t) = 0 

B sin kz cos ωt = 0 

sin kz = 0 

⇒ k = 
nπ 
L 

where n = 1, 2, 3 . . .  .  

We can obtain the dispersion relation by inserting p(z, t) into the wave equation for the system. The relevant 
derivatives are 

∂p 
= kB cos kz cos ωt, 

∂z 
∂p 

= −ωB sin kz sin ωt, 
∂t 

∂2p 
= −k2B sin kz cos ωt, 

∂z2 

∂2p 
= −ω2B sin kz cos ωt. 

∂t2 

The wave equation then reduces to 

−k2B sin kz cos ωt = −ω2B sin kz cos ωt 
κ ⇒ ω = k 
ρ0 

π κ 
ωn = n . 

L ρ0 

Finally, the initial condition determines kn and B. The initial condition is 

p(L/2, 0) = p0 

L 
B sin k 

2
= p0 

nπ 
B sin

2 
= p0 

⇒ B = ±p0 if n = 1, 3, 5, 7 . . .  .  

Hence, n must be an odd integer. Otherwise, B would equal zero and p(z, t) = 0 which is indeed a—trivial— 
solution. Finally, the wave number is 

nπ 
kn = where n = 1, 3, 5, 7 . . .  .  

L 

And, 

B = +p0 for n = 1, 5, 9 . . .  

B = −p0 for n = 3, 7, 11, . . .  .  

Problem 4.6 – Normal modes of discrete vs. continuous systems 
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(a) The most general solution for a standing wave in a string is 

y(x, t) =  A cos (kx + φx) cos  (wt + φt) . 

The boundary conditions are 

y(0, t)	 = 0 

A cos φx = 0 
π ⇒ φx = 
2 

and 

y(L, t)	 = 0 

A sin kL = 0 

⇒ kL	 = nπ. 

Hence, the n-th normal mode of the string is � nπ 
yn(x, t) =  An sin x cos (ωnt + φt) ,

L 

where 

ωn =	 nω1 
nπv 

= 
L 

nπ T 
= 

L µ 

T 
= nπ . 

ML  

(b) The general formula for the frequency of the n-th mode is 

ωn
νn = 

2π 
n T 

= 
2 ML

. 

The five lowest normal modes are 

� � 
ν1 = 1 

2 
T 

ML  ≡ ν0, ν2 = T 
ML  = 2ν0, � � 

ν3 = 3 
2 

T 
ML  = 3ν0, ν4 = 2  T 

ML  = 4ν0, � 
ν5 = 5 

2 
T 

ML  = 5ν0. 

(c) From French 5-25, 

nπ 
ωn = 2ω0 sin 

2(N + 1)  

ω0 nπ ⇒ νn = sin 
2(N + 1)  

. 
π 
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The fundamental frequency is � 
T 

ω0 = 
L 
6 

M 
5 

30T 
= 

ML√ 
= 120ν0. 

The first five frequencies are then (N = 5)  

√ � � √ � � 
√ 

120 
π 

120 
π 

π 
12 ν

120 
π 

πsin = 0.9ν sin = 1.7νν 0, ν ν= = 0,1 0 2 06√ 
π 
4 ν

120 
π 

π 
3 νsin = 2.5ν sin = 3.0νν 0, ν= = 3 0 4 0 0,√ 

120 
π 

5 νπ 
12sin = 3.5νν = 5 0 0. 

(d) The following figures show the first 5 normal modes for the string and the beads. 

string 

n=1 n=2 

beads 

n=3 n=4 

n=5 

(e) Since N = 5 is still not N 	 1, the normal mode frequencies and shapes are not identical. 
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