8.03 Fall 2004 Problem Set 7 Solutions

Solution 7.1: Polarized radiation

Part (a)

For angle $\alpha = \pi/4$ from the +y direction

$$\vec{E}_{\pi/4} = \frac{E_0}{\sqrt{2}} \cos(\omega t - kx)(\hat{y} + \hat{z})$$
(1)

$$\vec{B}_{\pi/4} = \frac{1}{\omega} k \times \vec{E} = \frac{E_0}{c\sqrt{2}} \hat{x} \times (\hat{y} + \hat{z}) \cos(\omega t - kx)$$
$$= \frac{E_0}{c\sqrt{2}} \cos(\omega t - kx)(\hat{z} - \hat{y})$$
(2)

For angle $\alpha = -\pi/4$ from the +y direction

$$\vec{E}_{-\pi/4} = \frac{E_0}{\sqrt{2}} \cos(\omega t - kx)(\hat{y} - \hat{z})$$

$$\vec{B}_{-\pi/4} = \frac{1}{k} \times \vec{E} = \frac{E_0}{c} \hat{x} \times (\hat{y} - \hat{z}) \cos(\omega t - kx)$$
(3)

$$\pi/4 = \frac{-k}{\omega} \times E = \frac{-k}{c\sqrt{2}} x \times (y-z) \cos(\omega t - kx)$$
$$= \frac{E_0}{c\sqrt{2}} \cos(\omega t - kx)(\hat{y} + \hat{z})$$
(4)

Part (b)

$$\vec{E} = E_0[\cos(\omega t - kx)\hat{y} + \cos(\omega t - kx + \pi/2)\hat{z}]$$
(5)

$$\vec{B} = \frac{1}{\omega} k \times \vec{E} = \frac{E_0}{c} \hat{x} \times \left[\cos(\omega t - kx) \hat{y} + \cos(\omega t - kx + \pi/2) \hat{z} \right]$$
$$= \frac{E_0}{c} \left[\cos(\omega t - kx) \hat{z} - \cos(\omega t - kx + \pi/2) \hat{y} \right]$$
(6)

This is called left handed circular polarization by many authors, though it is called right handed by Bekefi and Barrett.

$$\vec{E} = E_0 [\cos(\omega t - kx)\hat{y} + \cos(\omega t - kx - \pi/2)\hat{z}]$$
(7)

$$\vec{B} = \frac{1}{\omega} k \times \vec{E} = \frac{E_0}{c} \hat{x} \times \left[\cos(\omega t - kx) \hat{y} + \cos(\omega t - kx - \pi/2) \hat{z} \right]$$
$$= \frac{E_0}{c} \left[\cos(\omega t - kx) \hat{z} - \cos(\omega t - kx - \pi/2) \hat{y} \right]$$
(8)

This is called right handed circular polarization by many authors, though it is called left handed by Bekefi and Barrett.

Solution 7.2 — Linear polarizers – Malus' law + absorption

The E-field amplitude of the transmitted part of an EM wave through a linear polarizer is $E_T = E \cos \theta$, where E_T and E are the E-field amplitudes of the transmitted and incident waves, respectively, and θ is the angle between the polarization of the incident wave and the direction of polarization of the polarizer. Thus, the intensity is reduced by $\cos^2 \theta$. Since $\langle \cos^2 \theta \rangle = 1/2$, half of unpolarized light passes through a perfect polarizer.

Furthermore, since the polarizers are HN30, the transmitted intensity through one polarizer is $I = (0.5 \times 0.7)I_u$, where I_u is the intensity of the unpolarized light. This I is I_0 in our problem. The intensity through two polarizers is $I = I_0(0.7 \cos^2 \theta_{12})$, where θ_{12} is the angle between the polarization axes of the first and second polarizers. Similarly, the intensity through three polarizers is $I = I_0(0.7 \cos^2 \theta_{12})(0.7 \cos^2 \theta_{23})$, where θ_{23} is the angle between the polarization axes of the second and the third polarizers.

Let's examine each case individually.

- **F** The unpolarized light passes through only one polarizer, so $I = (0.5 \times 0.7)I_u = I_0$.
- **G** The light passes through two polarizers at right angles, so $I = I_0(0.7 \cos^2 \pi/2) = 0.$
- **H** Two polarizers: $\theta_{12} = \pi/6$. Hence, $I = I_0(0.7 \cos^2 \pi/6) = 0.525I_0$.
- **K** Three polarizers: $\theta_{12} = \pi/6$ and $\theta_{23} = \pi/3$. Hence, $I = I_0(0.7\cos^2 \pi/6)(0.7\cos^2 \pi/3) \approx 0.368I_0$;
- **L** Note that this case is physically identical to H so $I = 0.525I_0$.
- **M** Two polarizers: $\theta_{12} = \pi/3$. Hence, $I = I_0(0.7 \cos^2 \pi/3) = 1.4I_0$.
- **N** The light passes through only one polarizer, so $I = I_0$.

Solution 7.3: (Bekefi & Barrett 4-1) Radiation from an accelerated charge

FIG. 1: Problem 7.3 Radiation from an accelerated charge

 \vec{a}_{\perp} is the component of the acceleration of the charge in a direction perpendicular to the position vector of the observer. θ is the angle between the direction of acceleration and the position vector of the observer.

$$\begin{aligned} t' &= t - \frac{r}{c} \\ \vec{E}(\vec{r},t) &= \frac{-q\vec{a}_{\perp}(t')}{4\pi\epsilon_0 rc^2} \quad Vm^{-1} \\ \vec{B}(\vec{r},t) &= \frac{\hat{r}}{c} \times E(\vec{r},t) \quad Wm^{-2} \\ \vec{S} &= \frac{1}{\mu_0} \vec{E} \times \vec{B} \quad Wm^{-2} \\ E(\vec{r},t) &= \frac{-qa(t')\sin\theta}{4\pi\epsilon_0 rc^2} \\ |\vec{S}(\vec{r},t)| &= \frac{q^2a^2(t')\sin^2\theta}{16\pi^2\epsilon_0 r^2 c^3} \\ P(t) &= \int_0^{\pi} |\vec{S}(\vec{r},t)| 2\pi r^2 \sin\theta d\theta = \frac{q^2a^2(t')}{6\pi\epsilon_0 c^3} \quad Watt \end{aligned}$$

FIG. 2: Orientation of radiated electric and magnetic fields

Arrival time at all the three observers A, B and C is $t_{arrival} = R/c$. The direction of the electric field at the point of observation is anti-parallel to the component of the acceleration perpendicular to the position vector. The direction of the magnetic field is cross product of the position vector with the electric field. Fig. 2 shows the directions.

• Observer A

$$\vec{E}_A = \frac{qa(t')}{4\pi\epsilon_0 Rc^2} \sin \theta_A (\vec{r}_A \times \hat{x}) \qquad \theta_A = \frac{\pi}{2}$$
$$= \frac{-qa(t')}{4\pi\epsilon_0 Rc^2} \hat{z}$$
(9)

• Observer B

$$\vec{E}_B = \frac{qa(t')}{4\pi\epsilon_0 Rc^2} \sin\theta_B(\vec{r}_B \times \hat{x}) \qquad \theta_B = \frac{\pi}{6}$$
$$= \frac{1}{2} \frac{qa(t')}{4\pi\epsilon_0 Rc^2} (\frac{\sqrt{3}}{2}\hat{y} - \frac{1}{2}\hat{z}) \qquad (10)$$

• Observer C

$$\vec{E}_C = \frac{qa(t')}{4\pi\epsilon_0 Rc^2} \sin\theta_C (\vec{r}_C \times \hat{x}) \qquad \theta_C = 0$$

= 0 (11)

Part (b)

As |B| = |E|/c, hence the relative strengths of the magnetic field B are same as the relative strengths of the electric field E in Part(a) at the three observation points. The arrival time of the magnetic field at the three observers A, B and C is $t_{arrival} = R/c$. The direction of the induced magnetic field at the three points is in the - x direction.

Solution 7.4: (Bekefi & Barrett 4-2) Radiation from an accelerated charge

Part (a)

A point charge +q from time interval $t = t_0$ to $t = t_0 + \Delta t$ feels a force perpendicular to its trajectory, and moves along a new trajectory without changing its speed $|\vec{w}|$. Since the angle $\Delta \alpha$ is small, the acceleration along x axis is negligible and does not effect the answer. The only significant acceleration of the point charge is along the -ydirection.

$$\vec{a} = \frac{\Delta V_y}{\Delta t} \hat{y} = \frac{w \sin \Delta \alpha}{\Delta t} \hat{y} \simeq w \frac{\Delta \alpha}{\Delta t} \hat{y}$$
$$\Rightarrow \quad a_\perp = a_y \sin \theta = w \frac{\Delta \alpha}{\Delta t} \sin \theta$$

here a_{\perp} is the component of acceleration perpendicular to the position vector of the distant point P_1 . Then the electric field at point P_1 is anti-parallel to a_{\perp} and is oriented as shown in Fig. 3.

$$E = \frac{q}{4\pi\epsilon_0 r} \frac{a_\perp}{c^2} (\hat{r}_{P1} \times \hat{z}) = \frac{q}{4\pi\epsilon_0 r} \frac{v}{c^2} \frac{\Delta\alpha}{\Delta t} \sin\theta (\cos\theta \hat{x} + \sin\theta \hat{y})$$
(12)

So at a distant point P_1 the electric field caused by the acceleration has the direction $(\cos \theta \hat{x} + \sin \theta y)$ where θ is as shown in Fig. 3.

FIG. 3: Problem 7.4 Radiation from an accelerated charge

FIG. 4: Problem 7.4(b) Radial plot of intensity versus angle θ

Part (b)

The radiation intensity $\propto |\vec{E}_{\perp}|^2 \propto \sin^2 \theta$. So it is most intense in the x - z plane.

Part (c)

The least intense direction is along the y axis. Fig. 4 shows the radial plot of variation of intensity with angle θ from along the +y direction.

Part (d)

$$\vec{B}(\vec{r},t) = \hat{r} \times \frac{\vec{E}(\vec{r},t)}{c} \quad \Rightarrow \quad \vec{B} \simeq \frac{E_{\perp}}{c} \propto \frac{1}{r}$$
 (13)

so, the amplitude decreases by a factor of 2.

Part (e)

$$\Delta E_{radiated} = P\Delta t = \frac{q^2 a^2 \Delta t}{6\pi\epsilon_0 c^3} = \frac{q^2 w^2}{6\pi\epsilon_0 c^3} \left(\frac{\Delta\alpha}{\Delta t}\right)^2 \Delta t \tag{14}$$

Solution 7.5: Speed checked by radar

$$f'(received by moving car) \simeq f(1+\beta)$$
 (15)

 $\beta=v/c$ is positive for approaching car

$$f''(received by police) \simeq f'(1+\beta) \simeq f(1+\beta)^2 \simeq f(1+2\beta)$$

Part (a)

$$\lambda = c/f \quad \Rightarrow \quad f = 3 \times 10^8 / 3 \times 10^{-2} = 10^{10} \ Hz \tag{16}$$

Part (b) See above.

Solution 7.6: Can't you hear the whistle blowing

Part (a)

FIG. 5: Problem 7.5 General Doppler Effect

The original Doppler expression for sound is

$$f' = \left(\frac{v + v_D \cos \theta_D}{v - v_S \cos \theta_S}\right) f$$

where v, v_S and v_D are the speeds of sound, the source and the detector with respect to the medium, respectively. θ_D and θ_S are angles as shown in Fig. 5.

Since $v_S/v \sim 20/340 \sim 0.06 \ll 1$ and $v_D = 0$, the Doppler expression can thus be simplified as

$$f' = \left(\frac{v}{v - v_S \cos \theta_S}\right) f \approx \left(1 + \frac{v_S}{v} \cos \theta_S\right) f$$

As the train passes the detector, the angle θ_S goes from 0 to π .

• Far away approaching $\theta \sim 0$, so $f' \approx (1 + 0.059)f$

$$f'_{far \ approach} = 1059 \ Hz \tag{17}$$

• Far away receding $\theta \sim \pi$, so $f' \approx (1 - 0.059)f$

$$f'_{far \ recede} = (1 - 0.059)f = 941 \ Hz \tag{18}$$

• Closest approach $\theta = \pi/2$

$$f'_{t=0} = (1 - 0.059 \cos \pi/2)f = f = 1000 \ Hz \qquad (\cos \theta = 0 \ !) \tag{19}$$

Part (b)

At $t = -10 \sec, \cos \theta = 200/100\sqrt{5} = 0.89$

$$f'_{t=-10} = (1 + 0.059 \times 0.89)f = 1053 \ Hz \tag{20}$$

At
$$t = -5 \sec$$
, $\cos \theta = 100/100\sqrt{2} = 0.71$
 $f'_{t=-5} = (1 + 0.059 \times 0.71)f = 1042 \ Hz$ (21)

Part (c)

Fig. 6 shows the plot of heard frequency versus time for the train whistle.

Solution 7.7: Our expanding universe - simplified

Part (a)

 $s = R\theta$ so

$$\theta = s/R = \frac{s + \Delta s}{R + \Delta R} \tag{22}$$

Dividing by Δt

$$s\left(\frac{\Delta R}{\Delta t}\right) = R\frac{\Delta s}{\Delta t} \quad \Rightarrow \quad \left(\frac{\Delta s}{\Delta t}\right) = \left[\frac{1}{R}\frac{\Delta R}{\Delta t}\right]s \tag{23}$$

Part (b) Hubble's Law: v = Hd, here v is the recession velocity of a galaxy, and d is the distance between us and that galaxy. For the balloon universe, ds/dt = v, and s = d. Thus $H = (1/R)(\Delta R/\Delta t)$. The units for H are 1/time. $\Delta R/\Delta t$ is the expansion rate of the balloon.

FIG. 6: Problem 7.6 Plot of heard frequency versus time

Part (c)

If $\Delta s/\Delta t = l$, the recession velocity at the horizon equals the maximum velocity of the ants. For constant $\Delta R/\Delta t$ this occurs at a distance

$$s_{max} = Rl \left(\frac{\Delta R}{\Delta t}\right)^{-1} \tag{24}$$

Note: R is the radius of the universe (Here, the radius of the balloon.)

Part (d)

Multiply Eq.(3) from the Problem Set 7.7, by $2/R^2$ and introduce $V = \Delta R/\Delta t$ and $\rho = 3M/4\pi R^3$. Then

$$\left(\frac{1}{R}\frac{\Delta R}{\Delta t}\right)^2 = \frac{8\pi G\rho}{3} + \frac{2(constant)}{R^2}$$
(25)

Part (e)

For a flat universe, the constant = 0, so

$$H^{2} = \left(\frac{1}{R}\frac{\Delta R}{\Delta t}\right)^{2} = \frac{8\pi G\rho}{3} \quad \Rightarrow \quad \rho_{0} = \left(\frac{3}{8\pi G}\right)H_{0}^{2} \sim 10^{-26} \ kg/m^{3} \sim 10^{-29} \ g/cm^{3} \ for \ H_{0} = 70 \ km/sec \ per \ Mpc.$$

$$\tag{26}$$

Part (f)

$$\left(\frac{1}{R}\frac{\Delta R}{\Delta t}\right)^2 = \frac{2MG}{R^3} + \frac{2(constant)}{R^2}$$

As before the constant=0, so $\Delta R/\Delta t = \sqrt{2MG/R}$ and $\Delta t = \Delta R\sqrt{R/2MG}$. Integrating gives

$$t = \frac{2R^{3/2}}{3\sqrt{2MG}} \quad \Rightarrow \quad R(t) \propto t^{2/3} \tag{27}$$

Now, since $H = \Delta R/(R\Delta t)$ and $R \propto t^{2/3}$ one can find an expression for H in terms of t. Let $R = ct^{2/3}$ then

$$\frac{\Delta R}{\Delta t} = \frac{2}{3}ct^{-1/3} \quad H = \frac{1}{ct^{2/3}} \left(\frac{2}{3}ct^{-1/3}\right) = \frac{2}{3t}$$
(28)

Age of the universe is now equal to $t_0 = 2/3H_0 \sim 9.3 \times 10^9$ years.

Part (g)

Combining Eqs. 27 and 28 shows that H is inversely proportional to $R^{3/2}$ (no time dependence!). Since R was smaller in the past, H must have been larger.

Part (h)

H becomes negative if $\Delta R/\Delta t$ becomes negative. This can occur for a closed universe. It means that the universe is collapsing, and thus the redshifted galaxies and QSO's would become blueshifted.