
� 

� � 

Massachusetts Institute of Technology 
Physics 8.03 Fall 2004 

Final Exam 

Thursday, December 16, 2004 

• You have 3 hours 

• Do all eight problems 

• You may use calculators 

• This is a closed-book exam; no notes are allowed 

Useful Formulae 

General differential equation for oscillators 

x + γẋ + ω2¨ 0 x = f0 cos (ωt) 

has solutions 

where 

x(t) =  A e− γ t  
2 cos 

� � 

ω2 
0 − 

γ2 

4 
t + α 

� 

+ xss(t) 

x(t) =  (A + B t) e− γ t  
2 + xss(t) 

x(t) =  A e−Γ1t + B e−Γ2t + xss(t) 

Γ1 
2 

= 
γ 
2 
± 

� 
γ2 

4 
− ω2 

0 

ω0 > 
γ 
2 

ω0 = 
γ 
2 

ω0 < 
γ 
2 

and the steady-state solution is 

xss(t) =  A(ω) cos (ωt − δ(ω)) 

γ ω  
A(ω) =  

f0 tan δ(ω) =  
ω2 − ω2(ω2 − ω2)2 + γ2 ω2 

�1/2
00 

Non-dispersive wave equation 
∂2 1 ∂2 

∂x2 y(x, t) =  
∂t2 y(x, t)

2v

where v = T/µ  for a string or v = κ/ρ for a gas. 
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Kinetic, potential energy and power 

dK 1 
� 

∂y 
�2 dU 

=
1 

� 
∂y 
�2 

P (t) =  −T 
∂y ∂y

= 
dx 2 

µ 
∂t dx 2 

T 
∂x ∂t ∂x 

Reflection and transmission coefficients 
v2 − v1 2v2

R = T = 
v2 + v1 v2 + v1 

Fourier series for a function f(θ) =  f(θ + 2π) 
∞ � � 

f(θ) =  
� A0 + Am cos (mθ) +  Bm sin (mθ)

2 
m=1 � π1 

Am = f(θ) cos (mθ) dθ m = 0, 1, 2, . . .
π −π � π1 

Bm = f(θ) sin  (mθ) dθ m = 1, 2, 3, . . .
π −π 

Dispersion 
ω dω 

vphase = and vgroup = 
k dk 

Maxwell’s equations 

∇ ·  

ρ 
 E = − 

∂ 


 E = ∇×  


B 
ε0 ∂t 

∂ 

∇ ·  
 
 B = µ0 ε0 + µ0 J

 B = 0  ∇×  


E 
∂t 

EM force, flux, energy, intensity 


 
 B 
 E × 
F = q E + 
v × 
 S = 1 
 B µ0 � �2 � �2ε0 � 
 � 1 � 
 �UE = � E� UM = � B�
2 2 µ0 

Dipole approximation 

−q
a⊥(t − r/c)
Erad(
r, t) =  Volt/m

4πε0c2r 
1 

Brad(
r, t) =  r̂ × 

 Erad(t)  Tesla  
c 

2Srad(
r, t) =  Erad × 

 1 
 Brad Watt/m
µ0 

2 2q a
P = Watt 

36πε0c
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Boundary conditions at the surface of a perfect conductor


E// 

E⊥ 

= 

= 

0 
ρS 

ε0 

�B// 
� = µ0 

B⊥ = 0  

� � |JS | 

Transmission lines 

∂V 
∂z 

= −L0 
∂I 
∂t 

vp = 
1 √ 

L0 C0 

Vr 

Vi 
= 

ZL − Z0 

ZL + Z0 � 
∂I 
∂z 

= −C0 
∂V 
∂t 

Z0 = 
L0 

C0 

Ir 

Ii 
= 

Z0 − ZL 

ZL + Z0 

Boundary conditions at the surface of a perfect dielectric 

B
(1) 

B
(2) 

E
(1) = E

(2) // = 
// 

// // µ1 µ2 

κe1 E
(1) − κe2 E

(2) ρs 
B

(1) = B(2)= ⊥ ⊥ ε0 
⊥ ⊥ 

n1 sin θ1 = n2 sin θ2 

Fresnel equations 

r‖ = E0r‖/E0i‖ = 
n1 

n1 

cos θ2 − n2 

cos θ2 + n2 

cos θ1 

cos θ1 
= − 

tan(θ1 − θ2) 
tan(θ1 + θ2) 

r⊥ = E0r⊥/E0i⊥ = 
n1 

n1 

cos θ1 − n2 

cos θ1 + n2 

cos θ2 

cos θ2 
= − 

sin(θ1 − θ2) 
sin(θ1 + θ2) 

t‖ = E0t‖/E0i‖ = 
n1 

2n1 cos θ1 

cos θ2 + n2 cos θ1 
= 

2 sin  θ2 cos θ1 

sin(θ1 + θ2) cos(θ1 − θ2) 

t⊥ = E0t⊥/E0i⊥ = 
n1 

2n1 cos θ1 

cos θ1 + n2 cos θ2 
= 

2 sin  θ2 cos θ1 

sin(θ1 + θ2) 

Special case of normal incidence (θ1 = θ2 = 0)  

Er n1 − n2 Et 2 n1 
r‖,⊥ = = t‖,⊥ = = 

Ei n1 + n2 Ei n1 + n2 

Doppler Effect 

λ′ 
= 

1 − β cos θ � for EM waves 
λ 1 − β2 

f ′ 
= 

vs + vr cos θr for sound waves 
f vs − vt cos θt 
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N source interference and diffraction: 

sin (Nδ/2) 
�2 2π

Interference I = I0 δ = d sin θ
sin (δ/2) λ 

sin β 
�2 π

Diffraction I = I0 β = D sin θ 
β λ 

Diffraction gratings: 
� �2sin (Nδ/2) 

�2 � 
sin β 

I = I0 sin (δ/2) β 

Physical constants 

Speed of light c 3 × 108 m s−1 

Vacuum permeability µ0 1.26 × 10−6 V m−1
� 
/A 

Vacuum permittivity ε0 8.85 × 10−12 C/ V m−1

Electron rest mass m 9.1 × 10−31 kg 
Elementary charge e 1.6 × 10−19 C 
Gravitational constant G 6.7 × 10−11 N m2/kg2 

Trigonometric Formulae 

sin (a + b) = sin  a cos b + cos  a sin b 

cos (a + b) = cos  a cos b − sin a sin b 
a + b a − b

sin a + sin  b = 2  sin  cos
2 2 

a + b
sin a − sin b = 2  cos  sin

2 

a + b 
cos a + cos  b = 2  cos  cos

2 

a − b 
2 

a − b 
2 

cos a − cos b = −2 sin  

π
sin (θ ± 

2
) =  

π
cos (θ ± 

2
) =  

sin (θ ± π) =  

cos (θ ± π) =  

4 

a + b 
2 

sin 
a − b 

2 

± cos θ 

∓ sin θ 

− sin θ 

− cos θ 



Complex exponentials 

ej θ  = cos  θ + j sin θ sin θ = 
ej θ  − e−j θ  

2 j 
cos θ = 

ej θ  + e−j θ  

2 
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Problem 1 (16 pts): Coupled Oscillators 

Two objects, A and B, with masses mA and mB , respectively, are connected by springs as shown 
in the figure. The spring constant of the spring on the left and on the right are both k; the spring 
constant of the spring in the middle is k′ . 

k A k’ B k 

mA mB 

In parts (a), (b), and (c) you are allowed to give the answers without any calcula
tions. 

a. (2 pts) If mA = ∞, what are the normal mode frequencies of the system? 

b. (3 pts) If k = 0, what are the normal mode frequencies of the system? 

c. (2 pts) If k′ = 0, what are the normal mode frequencies of the system? 

d. (4 pts) For the general situation, write down the coupled equations of motion. 

e. (5 pts) Find the normal mode frequencies. 
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Problem 2 (15 pts): Dispersive string 

The dispersion relation for oscillations of a realistic piano string with mass density µ and under 
tension T is given by 

T 
ω = k + α k2 

µ 

where α is a positive constant that depends on the stiffness of the string; k(= 2π/λ) is the wave 
number. The string is firmly clamped at x = 0 and at x = L. At  t = 0, the string is at rest and its 
displacement in the y-direction is given by: 

� π x� 2 π x  
� 

3 π x  
� 

y(x, 0) = sin + 4  sin  + 9  sin  
L L L 

a. (3 pts) What is the phase velocity on the string? Express your answer only in terms of k, µ, α, 
and T . 

b. (4 pts) What is the group velocity on the string? Express your answer only in terms of k, µ, α, 
and T . 

c. (5 pts) The string is released with zero velocity at t = 0. What is the displacement of the 
string at time t? 

d. (3 pts) In the absence of any damping or any other form of loss of energy, at what time t will 
the string for the first time have exactly the same shape as it did at time t = 0? Or will this 
never happen? Give your reasons. 
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Problem 3 (15 pts): Transmission line 

Z0 Z1ZLV = V0 cos(ω t) 

z = 0 

Two transmission lines of characteristic impedance Z0 = 50 Ω and Z1 = 100 Ω are connected by 
a load impedance ZL. A power supply drives the transmission line with characteristic impedance 
Z0 harmonically at frequency ω. The resulting voltage wave propagates along the z-axis and is 
incident on the junction with the load impedance and the other transmission line of characteristic 
impedance Z1. Take the junction to be at the position z = 0, with increasing z to the right of the 
junction. Consider the transmitted and reflected voltages and currents for the following different 
situations. Assume that there is no reflection from the far end of the second transmission line (with 
characteristic impedance Z1). 

a. (2 pts) Write down an expression for the voltage wave approaching the junction from the left 
Vi(z < 0) in terms of its initial amplitude, V0, ω, k = ω/v and z. Here v is the velocity of the 
wave. 

b. (3 pts) What are the voltage amplitudes (relative to Vi) of the reflected and transmitted waves 
for ZL = 0.  

In what follows (in all 3 questions), ZL = 100 Ω. 

c. (2 pts) What is the net impedance which terminates the first transmission line at z = 0?  

d. (4 pts) What are the amplitudes of the reflected and transmitted voltages? 

e. (4 pts) If the maximum current in the upper wire for z < 0 is 10  A, what then is the maximum 
current in 
(i) the lower wire for z < 0 
(ii) the load 
(iii) the upper wire for z > 0 
(iv) the lower wire for z > 0? 
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Problem 4 (5 pts): Design your own pinhole camera 

You are being asked to design a pinhole camera. Your box is a cube of 70 cm on the side. You drill a 
small circular hole in one side, and use the opposite inside wall as the screen where the photographic 
film is placed. You have to optimize the resolution of the camera. 

Derive the approximate diameter (in mm) of the hole that will give you the best resolution at a 
wavelength of 500 nm. 
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Problem 5 (8 pts): Reflection of light 

A beam of unpolarized light of 500 nm in air is incident on a plate of glass. The angle of incidence 
is 40o (this is the angle between the direction of the incoming light and the normal to the glass). 
The index of refraction of the glass is 1.5. 

a. (5 pts) Which fraction of the incoming 10 kW is reflected off the front face of the glass. 

b. (3 pts) What is the degree of linear polarization of the reflected light? 
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Problem 6 (15 pts): Oscillator in viscous medium 

A mass m is held by a spring with spring constant k. The mass is immersed in a cup of water (see 
the figure). The water exerts a viscous force −b
v on the mass; 
v is the velocity of the mass relative 
to the liquid, and  b is a positive constant. A indicates the position of the suspension point of the 
spring, B the equilibrium position of the mass m, and  C the position of the bottom of the cup. 

A 

B 

C 

a. (2 pts) The mass is displaced vertically from its equilibrium (B); it is then released. Find the 
differential equation of vertical motion of the mass m. The cup is at rest. 

The cup is now moved up and down at an angular frequency ω. The position of the bottom of 
the cup (C) is given  by  d1(t) =  D1 cos(ωt). 

b. (3 pts) Find the differential equation for the position x(t) of the mass m. Give your answer 
in terms of m, k, b, D1, and ω. Remember that 
v in the viscous force is the velocity 
relative to the liquid. 

c. (3 pts) What is the	 steady state amplitude of the mass m? Give your answer in terms of 
m, k, b, D1, and ω. 

In addition to driving the cup, we now also drive the mass by moving the suspension end (A) 
of the spring up and down with the same frequency ω. The position of the suspension end is 
given by d2(t) =  D2 cos(ωt + φ). 

d. (3 pts) Write down the differential equation for x(t) in the case that both the cup and the 
spring are driven. 

e. (4 pts) Find D2 and φ, for which the steady state solution is x(t) = 0 at all times when both 
the cup and the spring are driven. 
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Problem 7 (12 pts): Discharging a capacitor 

A capacitor of capacitance C in an LRC circuit (see the figure) is initially charged and the switch 
is open; the charge on the plates of the capacitor is qo. At  time  t = 0 the switch is closed and the 
capacitor is discharged. 

LC 

R 

a. (3 pts) Write down the differential equation for the charge q(t) during the discharge. 

b. (2 pts) What are the initial conditions for the discharge? 

c. (2 pts) What should the value of the resistor R be to obtain critical damping? 

d. (3 pts) Write down the analytic expression of the charge q(t) in terms of  qo, L,  and R for the 
case of critical damping. 

e. (2 pts) Make a sketch of q(t) for the case of critical damping. Mark your time axis in units of 
T , where T is the period of undamped oscillations (i.e., in the case that R = 0).  
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Problem 8 (13 pts): Interferometric Radio Telescope 

An interferometric radio telescope is comprised of 10 telescopes separated from one another by 
800 m. The telescopes are aligned in the direction East-West. Each radio dish has a diameter of 
25 m. The interferometer is operating at a wavelength of 6 cm. The telescopes are all pointing 
towards the South at the same elevation in the sky. A bright radio source is in the South and it 
is moving from East to West (thus horizontally) in the sky due to the Earth rotation. During the 
observations, none of the telescopes move, they all remain pointed towards the same direction in 
the sky. 

a. (4 pts) Imagine first that all 10 telescopes are operating like radio transmitters; they emit 
spherical waves (λ = 6 cm), and that all these ten sources (telescopes) of radiation are in 
phase. Sketch the intensity pattern of this array of telescopes as a function of θ to a fictitious 
observer who is light years away. Since we are dealing here with very small angles, sinθ ≈ θ. 

b. (3 pts) We now reverse the scenario.	 The radio source is emitting EM radiation, and the 
interferometer is receiving. The radio interferometer detects the source loud and clear as the 
source is at the peak of the zero order maximum. How many radians will the source have to 
move in the sky for the interferometer to detect the radio source at the peak of the first order 
maximum? 
Hint: This interferometer behaves just like a multiple source array. Instead of EM waves being 
emitted by each of the telescopes, they are receiving EM waves. The E fields, as received by 
the individual telescopes, are vectorial ly added by the interferometer. When all E-fields are in 
phase, a maximum signal is received. 

c. (4 pts) What is the approximate width (in radians) of the zero order maximum and what is 
the width of the second order maximum? (The narrower the width, the higher is the angular 
resolution of the array.) 

d. (2 pts) If the diameter of the radio dishes were 100 m (instead of 25 m), would that increase 
the angular resolution of the array, and if so, by how much? Give your reasons. 
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