Your name
Circle your recitation - R01 - R02 - R03 - R04 - R05
An object with a mass m of 100 grams is attached between two massless springs, each with a spring constant k of $0.1 \mathrm{~N} / \mathrm{m}$. The object can freely oscillate on a frictionless horizontal surface (see the figure). At time $t=0$, its position is at $x=0$ which is its equilibrium point, and its velocity is $0.2 \mathrm{~m} / \mathrm{sec}$ in the positive x -direction. Its position at time t is:

$$
x(t)=A \sin (\omega t+\phi)
$$

Give the units in all your answers.

2 points

What is ω ?
$\omega=\sqrt{(} 2 k / m)=\sqrt{(0.2 / 0.1)}=\sqrt{2} \sec ^{-1}($ radians $/ \mathrm{sec})$

2 points

What is the frequency in Hz ?
$f=\omega / 2 \pi=\sqrt{2} /(2 \pi) \mathrm{Hz}\left(\mathrm{Hz}=\sec ^{-1}\right)$

3 points

What is ϕ ?
$\mathrm{x}=0$ when $\mathrm{t}=0$, thus $0=A \sin \phi$, thus $\phi=0$ or π radians.

3 points

What is A?
$\mathrm{v}=0.2$ for $\mathrm{t}=0 . d x / d t=\omega A \cos \omega t($ for $\phi=0)$.
Thus $v=A \omega$, thus $A=v / \omega=0.2 / \sqrt{2} \mathrm{~m}$.

For $\phi=\pi, d x / d t=\omega A \cos (\omega t+\pi)$
Thus $v=-A \omega$, thus $A=-v / \omega=-0.2 / \sqrt{2} \mathrm{~m}$.

NOTICE that these two solutions are identical as $\sin (\omega t+\pi)=-\sin (\omega t)$.

