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Phenomena
 

In the last lecture, the steady state solution to a driven oscillator with damping was shown to have 

no adjustable constants. Initial conditions appear to be irrelevant. For a mass on a spring, the 

undamped oscillation frequency would be ω0
2 = k/m, and the damping constant is γ = b/m. The 

undriven solution is x = Xe−γt/2 cos(ω't + α) where X and α come from initial conditions (2:30).o 
Here ω' = ω0

2 − γ
4 

2 
, slightly less than the undamped natural frequency. In contrast, with a driving 

ωγ F0/m
force of F0 cos ωt, we found x = A cos(ωt−δ), with tan δ = and A =  . 

ω2 − ω2 
0 (ω0

2 − ω2)2 + (ωγ)2 

This solution has no adjustable parameters (4:30). The driven equations of motion are: ⎧
F0 cos ωt ⎨ If the mass is driven with an applied force 

ẍ+ γẋ+ ω0
2x = m ⎩η0ω0

2 cos ωt If the end of the spring is driven with η0 cos ωt 

The solution in the latter case would have F0/m replaced by η0ω0
2, i.e. x = A cos(ωt − δ), with 

ωγ η0ω0
2 

tan δ = and A =  (7:00). While this latter situation is not worked 
ω2 − ω2 
0 (ω0

2 − ω2)2 + (ωγ)2 

out in detail, the procedure is similar to what was done for a pendulum in the previous lecture. 

Since the solution to the undriven case x = Xe−γt/2 cos(ω't + α) 

satisfies the differential equation ẍ + γẋ + ω0
2x = 0 (note the zero 

on the right side), it can be added to the solution for the driven 

case and still satisfy the more complicated differential equation. So, 

the complete solution in the driven case is x = A cos(ωt − δ) + 

Xe−γt/2 cos(ω't+α) (9:00), with the second term being the transient, 

the first the steady state solution. One could, in principle, solve for 

the constants, but it would be algebraically challenging. Since the transient and steady state terms 

oscillate at different frequencies, you can get beat phenomena, especially if Q is high so that the 

transient behavior dies out slowly (15:00). This is demonstrated using the air track. 

The mechanics definitions of work dW = FF · dFx and power P = dW/dt, so P = FF · Fv, can be 

applied to this situation (21:20). Since these systems are are 1-dimensional, the dot product is 

a simple multiplication and P = Fv = F0 cos ωt[−ωA sin(ωt − δ)] = −F0ωA cos ωt[sin ωt cos δ − 

cos ωt sin δ]. Usually only the average power is of interest (25:00). Time averaging, cos ωt sin ωt 



gives 0; cos ωt cos ωt gives 1/2. The average power is therefore: 

1 F0
2ω2γ F0

2γ 
P̄ = FF0ωA sin δ = = 

2 2m[(ω0
2 − ω2)2 + (ωγ)2] 2m[(

ω

ω − ω)2 + γ2] 

plugging in the value of A and using the formula for tan δ to find sin δ (27:30). 

If damping is very large (31:00), the average power is 0, due to the factor of γ in the denominator. 

If m is very large, no force can get the mass going, and the power again goes to 0. If F0 is zero, 

nothing moves so the power also goes to 0. If the driving fre

2
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quency is 0, again nothing moves, power is again 0. If ω is very 

high, inertia prevents much motion and again power goes to 0. 

If ω approaches ω0 (34:00), maximum power is used, and we 
F0

2 QF0
2 

¯get Pmax = = since Q = ω0/γ. The power shows a 
2γm 2mω0 

resonance curve with a width at half-maximum very close to γ 

so that a highly damped system has a wide resonance curve and 

a high-Q system has a very narrow resonance peak. 

The same formalism is applied to an RLC circuit driven by an AC voltage supply V = V0 cos ωt 

(41:30). In the circuit, charge q is on the capacitor plate and the current is I = dq/dt; at the i 
capacitor VC = q/C. Faraday’s Law applies so EF · dFl = − 

dφ 
where φ is the magnetic flux 

dt 
enclosed, most of which is in the inductor L, defined by φ = LI. Applying Faraday’s Law around 

the whole circuit, IR + VC − V0 cos ωt = −LdI .
dt Taking another time derivative: 

I −V0ω sin ωt ¨ ¨ LI + Rİ + = −V0ω sin ωt or I + γİ + ω0
2I = 

C L 

1where γ = R/L, ω0
2 = 

LC , and the result is amazingly similar to the driven spring equation (46:30). 

There are similar limiting cases at high and low frequency as well as resonant behavior as found 

for the spring, with the resistance acting like damping. The resonant peak current is V0/R at 

ω = ω0. The current output for a driven RLC circuit with R = 50 Ω, L = 50 mH, C = 0.5 µF 

(ω0 = 6.3 × 103 sec−1 Q = ω0/γ ≈ 6.3) as a function of driving frequency is demonstrated (55:00). 

This system has a decay time of 2 msec so the transient behavior is irrelevant. The current output 

for higher resistances is also shown. 

The absorption of power by a system driven right at resonance, as well as the fact that going off 

resonance dramatically reduces the power absorption, is demonstrated using two matched tuning 

forks which have very high Q and therefore very narrow resonance curves (1:01:30). 

In atomic physics (1:06:00), electrons have discrete orbits with discrete energy levels and can 

make transitions with a change of energy, which is carried in or out by electromagnetic radiation. 
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Energy of light is proportional to frequency (red is low energy, violet is high energy). The surface of 

the Sun radiates all frequencies as a continuous spectrum (black body). As this goes out through 

the atmosphere, resonant absorption by gas removes certain frequencies and these are observed 

as dark spectral lines where not as much light comes out. These lines allow identification of the 

elements present in the Sun and other stars. Helium (Greek for Sun is Helios) was first discovered 

on the Sun (1:11:15) since the corresponding line was previously unknown. Very-high-Q resonant 

absorption on the atomic scale (light absorbed by sodium) is demonstrated (1:15:00). The line in 

the yellow region at the edge of the red band appears dark because the absorbed light is re-emitted 

in all directions, so very little of it goes in the direction of the incident beam of light. 
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