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Notes for Lecture #5: Coupled Oscillators
 

Previous lectures have considered single systems, with and without outside sources of damping 

and/or forcing. Most realistic physical systems have more than one component and the interaction 

between these objects can cause vibrations. This is known as coupling. Damping is left out for 

simplicity. In the first example, with pendulums connected by a spring, this would be a very good 

approximation, since the damping is small. In the demo (2:00) 

oscillation seems to move between the two pendulums. Normal 

modes will have each object at the same frequency, and in the 

no-damping case the coupled objects are either in phase or out 

of phase (180◦ apart). For two objects, two normal modes are 

expected and their frequencies are denoted ω− (in phase) and 

ω+ (out of phase). General motion will combine normal modes, 

so we have (5:00): 

x1 = x0− cos(ω−t + φ−) + x0+ cos(ω+t + φ+) and x2 = x0− cos(ω−t + φ−) − x0+ cos(ω+t + φ+) 

The constants x0− and x0+ are the amplitudes of the normal modes and can be zero. Prof. Lewin 

first excites the − mode (8:15), with identical motion of the pendulums, then the + mode, with 

opposed motion (9:50). Since the spring does nothing in the − mode, the frequency is just that 

of a single pendulum ω2 = ω2 = g/l.− 0 

For the opposed mode, a more detailed analysis is needed. The spring is stretched by 2x, with x 

the displacement of an individual pendulum, so Fs = −2kx. We also have string tension T = mg 

(for small angles), with a horizontal component of Tx = −mg sin θ = −mgx/f. The two natural 

frequencies are ω0
2 = g/l for the pendulum and ωs 

2 = k/m for the spring plus one mass. Newton’s 

Second Law gives mẍ = −2kx − mgx/f, or ẍ + 2ωs 
2x + ω0

2x = 0 (13:30), which is so similar to  
previous differential equations that we can easily find ω+ = 2ωs 

2 + ω0
2 (15:00). 

As sample initial conditions at t = 0, let x1 = C and v1 = 0, and x2 = 0 and v2 = 0 

(17:00). This means both masses are released from rest, but with mass 1 offset and mass 

2 hanging vertically. Plugging these t = 0 conditions into the equations for x1 and x2 (and 

their derivatives) and solving the resulting four equations give φ1 and φ2 both 0. Therefore, 

C = x0− + x0+ and 0 = x0− − x0+, so x0− and x0+ are both C 
2 . The full solutions (20:30) are 

1 1 1 x1 = 
2 C cos ω−t+ 

2 C cos ω+t and x2 = 
2 C cos ω−t− 1

2 C cos ω+t . Since the amplitudes of the two co



 

 2  2 
ω− + ω+ ω− − ω+

sine terms are identical, we can use a trig identity to find x1 = C cos t cos t 
2	 2 2  2 

ω− + ω+ ω− − ω+
and x2 = C sin t sin t . This resembles beats with a fast term multiplying 

2 2 
a slow term. Since the slow terms (with ω− − ω+) are out of phase, oscillations will “move” from 

one mass to the other. This is demonstrated (25:20) for varying amounts of coupling (including 

the “trivial” condition of no coupling) by repositioning the spring on the pendulum supports. 

A general “recipe” is given for solving for the normal modes (32:00): 

1. Give each object a displacement from equilibrium. 

2. Apply Newton’s Second Law to each object (which for n objects gives n + 1 unknowns, the 

amplitudes of motion of each object plus the frequency of the normal mode). 

3. Use solutions x1 = C1 cos ωt, x2 = C2 cos ωt, ... For normal modes, the objects will all be in 

or out of phase so no φ terms are needed. Out-of-phase just changes the sign of the C’s. 

4. Now	 substitute in the F = ma equations and solve for ω and for ratios of C’s (overall 

magnitude is given by initial conditions and you can only find n parameters from n equations). 

This recipe is used to solve again our system of two pendulums connected by a spring (37:00). 

The spring force is |Fs| = k(x2 −x1) and the differential equations are mẍ1 = −mgx1/l +k(x2 −x1) 

and mẍ2 = −mgx2/l − k(x2 − x1), with very careful attention paid to signs. Now we rearrange 

and use the notations introduced before which is ω0
2 = g/l and ωs 

2 = k/m. This gives (44:00): 

ẍ1 + (ω0
2 + ω2)x1 − ω2 x2 = 0 and ẍ2 + (ω0

2 + ω2)x2 − ω2 x1 = 0 s s	 s s 

Note that the last term in each equation is the coupling term. The solutions x1 = C1 cos ωt, 

x2 = C2 cos ωt are plugged in. With only second derivatives, the cos terms end up common and 

can be cancelled giving −ω2C1 + (ω0
2 + ωs 

2)C1 − ωs 
2C2 = 0 and −ω2C2 + (ω0

2 + ωs 
2)C2 − ωs 

2C1 = 0. 

These two equations are solved for the ratio C1/C2 (50:00): 

ω2	 −ω2 + ω0
2 + ω2C1 s	 C1 s =	 and = 

C2 −ω2 + ω0
2 + ω2 C2 ω2 

2	 s 

These two equations must have two solutions for ω (what we earlier called ω− and ω+). Multiplying 

through, ω4 = (−ω2 + ω0
2 + ω2)2 . Taking the square root, −ω2 + ω0

2 + ω2 = ±ω2, where the ±s s	 s s 

is important. Now, solve for ω, using an inverted ± to keep track of where it came from, to find 

ω2 = ω0
2 + ωs 

2 = ωs 
2 . All the algebra simplifies (53:20), and we get the two solutions ω− = ω0 and 2  2 

C1	 C1
ω+ = ω0

2 + 2ωs 
2 . Substituting back, we find = +1 and = −1. This more general 

C2 − C2 + 
procedure gives the same answers as found before. 
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Now a seemingly simple (but nonsymmetric) case of the double pendulum is discussed (56:30).
√C2 C1

Denoting the top bob as “1”, = 1 + 2 ≈ 2.4 for the lowest mode, and ≈ −2.4 for the 
C1 C2 

highest mode (note the inverted fraction in the two solutions). 

The normal modes are also resonance frequencies (natural fre

quencies) of the whole system, and so it is relatively easy to 

get the system oscillating at those frequencies. Demos follow 
√ 

(1:00:40); first the low ω case with C1 = 1+ 2 ≈ 2.4, then the 
C2 

C1 ≈ −2.4 higher mode case. Exact frequencies are not found 
C2 

but it is clear which mode has higher frequency. The relative 

amplitudes and the fact that the two bobs are in (out) of phase 

for the lower (higher) frequency are also obvious. 

Now a more complex system is introduced, 4 springs and 3 cars, with the same spring constant k 

and mass m (1:03:30). There must be an ω−, an ω+, and an ω++. The first of these has all the √ 
objects in phase, and the middle one must be at 2 larger displacement than the others (stated 

but not derived). In the ω+ mode, the rightmost has the opposite displacement from the leftmost, 

and the middle one is at rest. In the ω++ mode, the outer two are in phase and the central one is 
√ 

out of phase with displacement − 2 of the others. If these initial conditions are set up on the air 

track (1:09:00), the normal modes occur. The demo is impressive in matching what is expected. 

Getting braver, some general char

acteristics of the triple pendulum 

are examined (1:13:30). The low

est mode must have all bobs in 

phase, the highest mode has the 

middle one out of phase with the 

other two. The middle mode is harder to figure out since there are two possibilities. Using the 

resonance property, the answer can be found experimentally with the answer being that the top 

two are in phase and the bottom one is out of phase with a large amplitude (1:17:00). 
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