Massachusetts Institute of Technology OpenCourseWare

8.03SC

Fall 2012

Problem Set \#1 Solutions

Problem 1.1: Manipulation of complex vectors

a) $\quad(4-\sqrt{5} j)^{3}=4^{3}-3 \cdot 4^{2} \cdot \sqrt{5} j+3 \cdot 4 \cdot(\sqrt{5} j)^{2}-(\sqrt{5} j)^{3}=64+5 \sqrt{5} j-48 \sqrt{5} j-60$ $=4-43 \sqrt{5} j$

Magnitude:
$\left|(4-\sqrt{5})^{3}\right|=\sqrt{4^{2}+(43 \sqrt{5})^{2}}=$ $\sqrt{16+9245}=\sqrt{9261}=96.23$
Direction: $\arctan \left(\frac{-43 \sqrt{5}}{4}\right)=-87.62^{\circ}$ We show a graphical representation. Raising the complex vector Z to the power 3 means that the new angle is 3 times larger than that of Z, and the length of the new vector is the length $|Z|^{3}$. The length of the vector Z^{3} is not to scale $\left(|Z|^{3} \approx 96\right)$.

b) $\frac{A e^{j(\omega t+\pi / 2)}}{4+5 j}=\frac{A(\cos (\omega t+\pi / 2)+j \sin (\omega t+\pi / 2))}{4+5 j}$

$$
=\frac{A(\cos (\omega t+\pi / 2)+j \sin (\omega t+\pi / 2))}{4+5 j} \times \frac{4-5 j}{4-5 j}
$$

$$
=\frac{A[4 \cos (\omega t+\pi / 2)+5 \sin (\omega t+\pi / 2)+j[4 \sin (\omega t+\pi / 2)-5 \cos (\omega t+\pi / 2)]]}{4^{2}+5^{2}}
$$

Real Part $\quad \frac{A}{41}[4 \cos (\omega t+\pi / 2)+5 \sin (\omega t+\pi / 2)]$
Imaginary Part $\quad j \frac{A}{41}[(4 \sin (\omega t+\pi / 2)-5 \cos (\omega t+\pi / 2)]$
c) Remember $e^{j \theta}=\cos (\theta)+j \sin (\theta)$

$$
\begin{aligned}
Z_{1} & =j^{j}=\left[e^{j(\pi / 2 \pm 2 n \pi)}\right]^{j}=e^{j(\pi / 2 \pm 2 n \pi) \times j}=e^{j^{2}(\pi / 2 \pm 2 n \pi)}=e^{-(\pi / 2 \pm 2 n \pi)} \\
& \simeq 0.208,3.88 \times 10^{-4}, 1.11 \times 10^{2} \ldots \quad(n=0,1 \ldots)
\end{aligned}
$$

Note: All values are real!

$$
\begin{aligned}
Z_{2} & =j^{8.03}=\left[e^{j(\pi / 2 \pm 2 n \pi)}\right]^{8.03}=e^{j([8.03 \times(\pi / 2 \pm 2 n \pi)]} \\
& =\cos \left[8.03 \times\left(\frac{\pi}{2} \pm 2 n \pi\right)\right]+j \sin \left[8.03 \times\left(\frac{\pi}{2} \pm 2 n \pi\right)\right] \\
& =0.999+0.047 j, 0.9724+0.233 j, 0.990-0.141 j \ldots \quad(n=0,1 \ldots)
\end{aligned}
$$

Problem 1.2: (French 1-10) ${ }^{1}$ SHM of y as a function of x

$$
\begin{aligned}
y & =A \cos (k x)+B \sin (k x) \Rightarrow \quad \frac{d y}{d x}=-A k \sin (k x)+B k \cos (k x) \\
\Rightarrow \quad \frac{d^{2} y}{d x^{2}} & =-A k^{2} \cos (k x)-B k^{2} \sin (k x)=-k^{2}[A \cos (k x)+B \sin (k x)] \quad \frac{d^{2} y}{d x^{2}}=-k^{2} y
\end{aligned}
$$

Hence the given differential equation has $y=A \cos (k x)+B \sin (k x)$ as its solution.
Now to express the equation in the desired form, we divide and multiply it by $\sqrt{A^{2}+B^{2}}$. When we substitute $\cos (\alpha)=A / \sqrt{A^{2}+B^{2}}$ and $\sin (\alpha)=-B / \sqrt{A^{2}+B^{2}}$, the equation takes the form:

$$
\begin{aligned}
y & =\frac{A \cos (k x)+B \sin (k x)}{\sqrt{A^{2}+B^{2}}} \times \sqrt{A^{2}+B^{2}}=\sqrt{A^{2}+B^{2}}[\cos (\alpha) \cos (k x)-\sin (\alpha) \sin (k x)] \\
& =\sqrt{A^{2}+B^{2}} \cos (k x+\alpha) \\
y & =\sqrt{A^{2}+B^{2}} \cos (k x+\alpha)=\sqrt{A^{2}+B^{2}} \operatorname{Re}\left[e^{j(k x+\alpha)}\right]=\operatorname{Re}\left[\left(\sqrt{A^{2}+B^{2}} e^{j \alpha}\right) e^{j k x}\right]
\end{aligned}
$$

where $C=\sqrt{A^{2}+B^{2}} \quad \alpha=\tan ^{-1}-\left(\frac{B}{A}\right)$

Problem 1.3: (French 1-11) Oscillating springs

a) The mass at the end of the spring oscillates with an amplitude of 5 cm and at a frequency of 1 Hz , hence the values of A and ω are: $A=5 \mathrm{~cm} \quad \omega=2 \pi f=2 \pi \times 1=2 \pi \mathrm{rad} / \mathrm{s}$.

We are given that at time $t=0$ the mass is at the position $x=0$. Using this and substituting the values from above in the equation $x=A \cos (\omega t+\alpha)$ we get $0=5 \cos (\alpha) \Rightarrow \cos (\alpha)=0 \alpha= \pm \frac{\pi}{2}$. Hence the possible equations of motion for the mass as a function of time are $x=5 \cos \left(2 \pi t+\frac{\pi}{2}\right)$ and $x=5 \cos \left(2 \pi t-\frac{\pi}{2}\right) \mathrm{cm}$ where the values are $A=5 \mathrm{~cm}, \omega=2 \pi \mathrm{rad} / \mathrm{s}$, and $\alpha= \pm \frac{\pi}{2}$.
b) $x=A \cos (\omega t+\alpha) \Rightarrow d x / d t=-A \omega \sin (\omega t+\alpha) \Rightarrow d^{2} x / d t^{2}=-A \omega^{2} \cos (\omega t+\alpha)=-\omega^{2} x$ Substituting values for A, ω, and α from part (a); and putting $t=\frac{8}{3} \mathrm{sec}$, we get

$$
\begin{aligned}
x & =5 \cos \left[\left(2 \pi \times \frac{8}{3}\right) \pm \frac{\pi}{2}\right]=5 \cos \left(\frac{16 \pi}{3} \pm \frac{\pi}{2}\right) \\
& =5 \cos \left(\frac{35 \pi}{6}\right), 5 \cos \left(\frac{29 \pi}{6}\right)=5 \cos \left(\frac{11 \pi}{6}\right), 5 \cos \left(\frac{5 \pi}{6}\right)= \pm \frac{5 \sqrt{3}}{2} \mathrm{~cm}= \pm 4.330 \mathrm{~cm} \\
\frac{d x}{d t} & =-5 \times 2 \pi \sin \left[\left(2 \pi \times \frac{8}{3}\right) \pm \frac{\pi}{2}\right]=-10 \pi \sin \left(\frac{16 \pi}{3} \pm \frac{\pi}{2}\right)= \pm 5 \pi \mathrm{~cm} / \mathrm{s}= \pm 15.708 \mathrm{~cm} / \mathrm{s} \\
\frac{d^{2} x}{d t^{2}} & =5 \times(2 \pi)^{2} \cos \left[\left(2 \pi \times \frac{8}{3}\right) \pm \frac{\pi}{2}\right]=20 \pi^{2} \cos \left(\frac{16 \pi}{3} \pm \frac{\pi}{2}\right) \\
& = \pm 10 \sqrt{3} \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}= \pm 170.95 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

[^0]
Problem 1.4: (French 3-4) Floating Cylinder

a) The diameter of the floating cylinder is d and it has l of its length submerged in water. The volume of water displaced by the submerged part of the cylinder in equilibrium condition is $\pi d^{2} l / 4$. Let the density of water be ρ_{w} and that of the cylinder be $\rho_{c y l}$. Hence the mass of the cylinder is:

$$
M_{c y l}=\rho_{w} V_{\text {displaced }}=\rho_{w} \pi \frac{d^{2} l}{4}=\rho_{c y l} \pi \frac{d^{2} L}{4}
$$

When the cylinder is submerged by an additional length x from its equilibrium position, the restoring force acting on it is $F_{\text {restoring }}=-\frac{\rho_{w} g \pi d^{2}}{4} x \Rightarrow M_{c y l} \ddot{x}=-\frac{\rho_{w} g \pi d^{2}}{4} x \Rightarrow 0=\ddot{x}+\frac{\rho_{w} g \pi d^{2} x}{4 M_{c y l}} \Rightarrow$ $\omega^{2}=\rho_{w} \frac{g \pi d^{2}}{4 M_{c y l}}=\frac{g}{l} \Rightarrow x(t)=A \cos (\omega t+\alpha)=A \cos \left(\sqrt{\frac{g}{l}} t+\alpha\right)$ Hence the angular frequency of the oscillations is $\omega=\sqrt{g / l} \mathrm{rad} / \mathrm{s}$ and the frequency in cycles per second is $f=\frac{1}{2 \pi} \sqrt{\frac{g}{l}} \mathrm{~Hz}$ b) The equation of motion is of the form: $x(t)=B \cos (\omega t+\alpha)$. We assume up to be the positive and down to be the negative direction. At $t=0, x=-B$

$$
\begin{aligned}
x(0)=-B & =B \cos (\sqrt{g / l} \times 0+\alpha) \\
\alpha & =\cos ^{-1}(-1)=\pi
\end{aligned}
$$

The velocity of the mass is

$$
\dot{x}(t)=-B \sqrt{g / l} \sin (\sqrt{g / l} t+\pi)=B \sqrt{g / l} \sin (\sqrt{g / l} t)
$$

The amplitude of the velocity is $V_{\max }=B \sqrt{g / l}$.

Problem 1.5: (French 3-14) A damped oscillating spring

The mass of the object is $m=0.2 \mathrm{~kg}$ and the spring constant is $k=80 \mathrm{~N} / \mathrm{m}$. The resistive force providing the damping force has the value of $-b v$, where v is velocity in m / s.
a) Let the oscillations of the spring be along the x axis. The spring force and damping force acting on the mass are: $F_{\text {restoring }}=-k x \quad F_{\text {damping }}=-b v=-b \dot{x}$
Newton's $2^{\text {nd }}$ law: $m \ddot{x}=F_{n e t}=F_{\text {restoring }}+F_{\text {damping }}=-k x-b \dot{x} \ddot{x}=-\frac{k}{m} x-\frac{b}{m} \dot{x}$
Hence the differential equation describing the motion of the mass is:

$$
\ddot{x}+\frac{b}{m} \dot{x}+\frac{k}{m} x=0 \quad \frac{d^{2} x}{d t^{2}}+\gamma \frac{d x}{d t}+\omega_{o}^{2} x=0 \quad \text { where } \quad \gamma=\frac{b}{m} \quad \omega_{0}^{2}=\frac{k}{m}
$$

b) We are given that the damped frequency is $\omega=0.995 \omega_{0}$. The value of the damped frequency in terms of the undamped frequency and damping parameter is:

$$
\begin{gathered}
\omega^{2}=\omega_{0}^{2}-\frac{\gamma^{2}}{4} \quad\left(0.995 \omega_{0}\right)^{2}=0.99 \omega_{0}^{2}=\omega_{0}^{2}-\frac{\gamma^{2}}{4} \\
\frac{\gamma^{2}}{4}=\frac{b^{2}}{4 m^{2}}=0.01 \omega_{0}^{2}=0.01 \frac{k}{m} \quad b=\sqrt{0.04 k m}=0.2 \sqrt{k m}
\end{gathered}
$$

substituting the values given in the problem, we find $b=0.8 \mathrm{Ns} / \mathrm{m}=0.8 \mathrm{~kg} / \mathrm{s}$.
c) $\omega_{0}=\sqrt{\frac{k}{m}}=20 \mathrm{rad} / \mathrm{s} \quad \gamma=\frac{b}{m}=4 \mathrm{rad} / \mathrm{s} \quad Q=\frac{\omega_{0}}{\gamma}=5$. Four complete cycles imply that the time $t=8 \pi / \omega$. The envelope for the damped oscillatory motion as a function of time $A(t)=A_{0} \exp \left(-\frac{\gamma t}{2}\right)=A_{0} \exp \left(-\frac{4 \cdot 4 \pi}{0.995 \cdot 20}\right)=A_{0} \exp (-0.804 \pi) \quad \frac{A(t)}{A_{0}}=\exp (-0.804 \pi)=0.08$
The factor by which the amplitude is reduced after four complete cycles is 0.08 .
d) The equation defining the decay of energy of the system is: $E(t)=E_{0} e^{-\gamma t}$. Substituting values from above, we get $\frac{E(t)}{E_{0}}=\exp (-\gamma t)=\exp (-1.608 \pi)=0.0064$. The factor by which the energy is reduced after four complete cycles is 6.4×10^{-3}; this is the square of the ratio of the amplitudes.

Problem 1.6: A physical pendulum

a) To solve this problem, we first consider the simpler case of a two mass rigid pendulum, both of whose masses are equidistant from the pivot point at P. All three points lie on a circle of diamater D and subtend an angle α at the pivot, as shown. In this system, let the distance of each mass from the pivot point be l.

The moment of inertia of the two masses together is $I_{p}=M l^{2} / 2+M l^{2} / 2=M l^{2}$. At equilibrium the position of each mass is $l \cos (\alpha / 2)=l^{2} / D$ below P . The gravitational potential energy of the system, after being displaced over a small angle θ is $U \approx M g \frac{l^{2}}{D} \frac{\theta^{2}}{2}$

$$
\begin{aligned}
E & \approx \frac{1}{2} M l^{2} \dot{\theta}^{2}+\frac{1}{2} g \frac{M l^{2}}{D} \theta^{2} \quad \frac{d E}{d t}=M l^{2} \ddot{\theta} \ddot{\theta}+M g \frac{l^{2}}{D} \theta \dot{\theta}=0 \\
0 & =\ddot{\theta}+\frac{g}{D} \theta \quad T=2 \pi \sqrt{\frac{D}{g}}
\end{aligned}
$$

Hence the period is independent of the mass M and angle α. It only
 depends on the diameter D of the circle. So now considering the circular arc system whose period we have to calculate, we now realize that we can see it as a collection of many such two-mass pendulums. Since the period of all those pendulums is the same $T=2 \pi \sqrt{D / g}$, the period of the arc is also $T=2 \pi \sqrt{D / g}=2 \pi \sqrt{2 R / g}$.
b) The period of the oscillations is independent of the length of the arc and the 120° angle. Hence when we complete the arc to form the hoop, the period of the hoop is same as the period of the small angle oscillations of the arc.

Problem 1.7: Damped oscillator and initial conditions

a) The solution for the case of critical damping $\left(\gamma / 2=\omega_{0}\right)$ is of the form $s=(A+B t) e^{-\gamma t / 2}$. We know that $s(t=0)=0$ and $\dot{s}(t=0)=v_{0}$. So $s(0)=A e^{0}=0 \Rightarrow A=0$
$\dot{s}(0)=B e^{-\gamma t / 2}-\frac{\gamma}{2}(A+B t) e^{-\gamma t / 2}=-\frac{\gamma}{2} A+B=v_{0}$ $\Rightarrow \quad B=v_{0}$. Hence the time evolution of the displacement of the pen is $s(t)=v_{0} t e^{-\gamma t / 2}=v_{0} t e^{-\omega_{0} t}$ and so $s(t)$ does not change sign before it settles to its equilibrium position as $s=0$.

b) The solution describing the evolution of an overdamped system is $s=A_{1} e^{-(\gamma / 2+\beta) t}+A_{2} e^{-(\gamma / 2-\beta) t}$. Now $s(0)=A_{1}+A_{2}=s_{0} \quad \dot{s}(0)=-A_{1}\left(\frac{\gamma}{2}+\beta\right) e^{-(\gamma / 2+\beta) t}-A_{2}\left(\frac{\gamma}{2}-\beta\right) e^{-(\gamma / 2-\beta) t}$

$$
\begin{gathered}
0=-A_{1}\left(\frac{\gamma}{2}+\beta\right)-A_{2}\left(\frac{\gamma}{2}-\beta\right) \quad 0=\left(A_{2}-s_{0}\right)\left(\frac{\gamma}{2}+\beta\right)-A_{2}\left(\frac{\gamma}{2}-\beta\right) \\
2 A_{2} \beta=s_{0}\left(\frac{\gamma}{2}+\beta\right) \Rightarrow \quad A_{2}=s_{0} \frac{1}{2 \beta}\left(\frac{\gamma}{2}+\beta\right) \Rightarrow \quad A_{1}=s_{0}\left[1-\frac{1}{2 \beta}\left(\frac{\gamma}{2}+\beta\right)\right] \\
s=s_{0}\left[1-\frac{1}{2 \beta}\left(\frac{\gamma}{2}+\beta\right)\right] e^{-(\gamma / 2+\beta) t}+s_{0} \frac{1}{2 \beta}\left(\frac{\gamma}{2}+\beta\right) e^{-(\gamma / 2-\beta) t} \text { where } \beta=\sqrt{\frac{\gamma^{2}}{4}-\omega_{0}^{2}}
\end{gathered}
$$

c) Plot of $\mathrm{s}(\mathrm{t})$ for the given values

MIT OpenCourseWare
http://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The notation "French" indicates where this problem is located in one of the textbooks used for 8.03 in 2004: French, A. P. Vibrations and Waves. The M.I.T. Introductory Physics Series. Cambridge, MA: Massachusetts Institute of Technology, 1971. ISBN-10: 0393099369; ISBN-13: 9780393099362.

