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Problem Set #1 Solutions 

Problem 1.1: Manipulation of complex vectors 
√ √ √ √ √ √ 

a) (4 − 5j)3 = 43 − 3 · 42 · 5j + 3 · 4 · ( 5j)2 − ( 5j)3 = 64 + 5 5j − 48 5j − 60 
√
 

= 4 − 43 5j
 

Magnitude:  √ √ 
|(4 − 5)3| = 42 + (43 5)2 = 
√ √ 
16 + 9245 = 9261 = 96.232 √ 2
 

−43 5
 
Direction: arctan = −87.62◦ 

4 
We show a graphical representation. Rais
ing the complex vector Z to the power 3 
means that the new angle is 3 times larger 
than that of Z, and the length of the new 
vector is the length |Z|3 . The length of the 
vector Z3 is not to scale (|Z|3 ≈ 96). 

b) Aej(ωt+π/2) A(cos(ωt + π/2) + j sin(
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Magn= 4.583 

Magn= (4.583)3  96.23 

= 29.21o 

3 = 87.62o 

Z= 4  50.5j 

Z3= 4  43j*50.5 

ωt + π/2)) 
= 

4 + 5j 4 + 5j
 
A(cos(ωt + π/2) + j sin(ωt + π/2)) 4 − 5j
 

= × 
4 + 5j 4 − 5j 

A[4 cos(ωt + π/2) + 5 sin(ωt + π/2) + j[4 sin(ωt + π/2) − 5 cos(ωt + π/2)]] 
= 

42 + 52 

A 
Real Part [4 cos(ωt + π/2) + 5 sin(ωt + π/2)]

41

A 
Imaginary Part j [(4 sin(ωt + π/2) − 5 cos(ωt + π/2)]

41

c) Remember ejθ = cos(θ) + j sin(θ) 
j(π/2±2nπ)]j j(π/2±2nπ)×j j2(π/2±2nπ) −(π/2±2nπ)Z1 = jj = [e = e = e = e 

r 0.208 , 3.88 × 10−4 , 1.11 × 102 ... (n = 0, 1...) 

Note: All values are real! 
j(π/2±2nπ)]8.03 j([8.03×(π/2±2nπ)]Z2 = j8.03 = [e = e    π π 

= cos 8.03 × ( ± 2nπ) + j sin 8.03 × ( ± 2nπ)
2 2 

= 0.999 + 0.047j , 0.9724 + 0.233j , 0.990 − 0.141j ... (n = 0, 1...) 

http:j(�/2�2n�)]8.03
http:9261=96.23


Problem 1.2: (French 1-10)1 SHM of y as a function of x 
dy 

y = A cos(kx) + B sin(kx) ⇒ = −Ak sin(kx) + Bk cos(kx)
dx 

⇒ 
d2y 

= −Ak2 cos(kx) − Bk2 sin(kx) = −k2[A cos(kx) + B sin(kx)] 
d2y 

= −k2 y
dx2 dx2 

Hence the given differential equation has y = A cos(kx) + B sin(kx) as its solution. 
√ 

Now to express the equation in the desired form, we divide and multiply it by A2 + B2 . When√ √ 
we substitute cos(α) = A/ A2 + B2 and sin(α) = −B/ A2 + B2, the equation takes the form: 

A cos(kx) + B sin(kx) √ √ 
y = √ × A2 + B2 = A2 + B2[cos(α) cos(kx) − sin(α) sin(kx)]

A2 + B2 
√ 

= A2 + B2 cos(kx + α)
√ √ √ 

jα)ejkx]y = A2 + B2 cos(kx + α) = A2 + B2Re[ej(kx+α)] = Re[( A2 + B2e

√ 
where C = A2 + B2 α = tan−1 −(B )

A 

Problem 1.3: (French 1-11) Oscillating springs 

a) The mass at the end of the spring oscillates with an amplitude of 5 cm and at a frequency of 
1 Hz, hence the values of A and ω are: A = 5 cm ω = 2πf = 2π × 1 = 2π rad/s. 

We are given that at time t = 0 the mass is at the position x = 0. Using this and substituting the 
values from above in the equation x = A cos(ωt + α) we get 0 = 5 cos(α) ⇒ cos(α) = 0 α = ±π 

2 . 
Hence the possible equations of motion for the mass as a function of time are x = 5 cos(2πt + π 

2 ) 
and x = 5 cos(2πt − π 

2 ) cm where the values are A = 5 cm, ω = 2π rad/s, and α = ±π 
2 . 

b) x = A cos(ωt + α) ⇒ dx/dt = −Aω sin(ωt + α) ⇒ d2x/dt2 = −Aω2 cos(ωt + α) = −ω2x 
Substituting values for A, ω, and α from part (a); and putting t = 8

3 sec, we get       
8 π 16π π 

x = 5 cos 2π × ± = 5 cos ± 
3 2 3 2        √ 

35π 29π 11π 5π 5 3 
= 5 cos , 5 cos = 5 cos , 5 cos = ± cm = ±4.330 cm 

6 6 6 6 2       
dx 8 π 16π π 

= −5 × 2π sin 2π × ± = −10π sin ± = ±5π cm/s = ±15.708 cm/s 
dt 3 2 3 2      
d2x 2 8 π 16π π 

= 5 × (2π) cos 2π × ± = 20π2 cos ± 
dt2 3 2 3 2√ 

= ±10 3π2 cm/s2 = ±170.95 cm/s2 

1The notation “French” indicates where this problem is located in one of the textbooks used for 8.03 in 2004: 
French, A. P. Vibrations and Waves. The M.I.T. Introductory Physics Series. Cambridge, MA: Massachusetts 
Institute of Technology, 1971. ISBN-10: 0393099369; ISBN-13: 9780393099362. 
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Problem 1.4: (French 3-4) Floating Cylinder 

a) The diameter of the floating cylinder is d and it has l of its length submerged in water. The 
volume of water displaced by the submerged part of the cylinder in equilibrium condition is πd2l/4. 
Let the density of water be ρw and that of the cylinder be ρcyl. Hence the mass of the cylinder is: 

d2l d2L 
Mcyl = ρwVdisplaced = ρwπ = ρcylπ 

4 4 
When the cylinder is submerged by an additional length x from its equilibrium position, the 

ρwgπd
2 ρwgπd

2 ρwgπd
2x 

restoring force acting on it is Frestoring = − x ⇒ Mcyl ẍ = − x ⇒ 0 = ẍ+ ⇒ 
4 4 4Mcyl  

gπd2 g g
ω2 = ρw = ⇒ x(t) = A cos(ωt + α) = A cos( t + α) Hence the angular frequency of 

4Mcyl l l   1 g
the oscillations is ω = g/l rad/s and the frequency in cycles per second is f = Hz 

2π l 

b) The equation of motion is of the form: 
x(t) = B cos(ωt + α). We assume up to be the positive 
and down to be the negative direction. At t = 0, x = −B  

x(0) = −B = B cos( g/l × 0 + α) 

α = cos −1(−1) = π 

The velocity of the mass is     
ẋ(t) = −B g/l sin( g/lt + π) = B g/l sin( g/lt) 

The amplitude of the velocity is Vmax = B g/l. 
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Problem 1.5: (French 3-14) A damped oscillating spring 

The mass of the object is m = 0.2 kg and the spring constant is k = 80 N/m. The resistive force 
providing the damping force has the value of −bv, where v is velocity in m/s. 

a) Let the oscillations of the spring be along the x axis. The spring force and damping force acting 
on the mass are: Frestoring = −kx Fdamping = −bv = −bẋ

k b 
Newton’s 2nd law: mẍ = Fnet = Frestoring + Fdamping = −kx − bẋ ẍ = − x − ẋ

m m 
Hence the differential equation describing the motion of the mass is: 

b k d2x dx b k 
ẍ+ ẋ+ x = 0 + γ + ωo 

2 x = 0 where γ = ω0
2 = 

m m dt2 dt m m 

b) We are given that the damped frequency is ω = 0.995ω0. The value of the damped frequency 
in terms of the undamped frequency and damping parameter is: 

γ2 γ2 

ω2 ω2 2 = 0 − (0.995ω0)
2 = 0.99ω0 = ω0

2 − 
4 4 

√ √γ2 b2 k 
= = 0.01ω0

2 = 0.01 b = 0.04km = 0.2 km 
24 4m m 

substituting the values given in the problem, we find b = 0.8 Ns/m =0.8 kg/s. 
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k b ω0
c) ω0 = = 20 rad/s γ = = 4 rad/s Q = = 5. Four complete cycles imply 

m m γ 
that the time t = 8π/ω. The envelope for the damped oscillatory motion as a function of time 

γt 4 · 4π A(t)
A(t) = A0 exp − = A0 exp − = A0 exp(−0.804π) = exp(−0.804π) = 0.08 

2 0.995 · 20 A0 

The factor by which the amplitude is reduced after four complete cycles is 0.08. 

d) The equation defining the decay of energy of the system is: E(t) = E0e −γt . Substituting values 
E(t)

from above, we get = exp(−γt) = exp(−1.608π) = 0.0064. The factor by which the energy 
E0 

is reduced after four complete cycles is 6.4 × 10−3; this is the square of the ratio of the amplitudes. 

Problem 1.6: A physical pendulum 

a) To solve this problem, we first consider the simpler case of a two mass rigid pendulum, both of 
whose masses are equidistant from the pivot point at P. All three points lie on a circle of diamater 
D and subtend an angle α at the pivot, as shown. In this system, let the distance of each mass 
from the pivot point be l. 

The moment of inertia of the two masses together is Ip = Ml2/2 + Ml2/2 = Ml2 . At equilibrium 

the position of each mass is l cos(α/2) = l2/D below P. The gravita
tional potential energy of the system, after being displaced over a small 

l2 θ2 

angle θ is U ≈ Mg 
D 2 

1 1 Ml2 dE l2 

E ≈ Ml2θ̇2 + g θ2 = Ml2θ̇θ ̈+ Mg θθ̇ = 0 
2 2 D dt D 

g D¨ 0 = θ + θ T = 2π
D g 

Hence the period is independent of the mass M and angle α. It only 

M/2

Alpha

P

M/2

b) The period of the oscillations is independent of the length of the arc and the 120◦ angle. Hence 
when we complete the arc to form the hoop, the period of the hoop is same as the period of the 
small angle oscillations of the arc. 
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=

√
( ) ( )

depends on the diameter D of the circle. So now considering the circular arc system whose period

we have to calculate, we now realize that we can see it as a collection of many such two-mass

pendulums. Since the period of all those pendulums is the same T = 2π
√
D/g, the period of the

arc is also T = 2π
√
D/g = 2π

√
2R/g.

http:exp(�0.804�)=0.08


Problem 1.7: Damped oscillator and initial conditions
 

a) The solution for the case of critical damping 
−γt/2(γ/2 = ω0) is of the form s = (A + Bt)e . We 

know that s(t = 0) = 0 and ṡ(t = 0) = v0. So 
s(0) = Ae0 = 0 ⇒ A = 0 

−γt/2 ṡ(0) = Be−γt/2 − 
γ 
(A + Bt)e = − 

γ
A + B = v0

2 2 
⇒ B = v0. Hence the time evolution of the dis

−γt/2 −ω0tplacement of the pen is s(t) = v0te = v0te
and so s(t) does not change sign before it settles to 
its equilibrium position as s = 0. 0 0.5 1 1.5 2 2.5 3
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v0t=1.5t 

s(t)=1.5te  t/2 

−(γ/2+β)t −(γ/2−β)tb) The solution describing the evolution of an overdamped system is s = A1e +A2e .    
γ −(γ/2+β)t − A2

γ −(γ/2−β)tNow s (0) = A1 + A2 = s0 ṡ (0) = −A1 2 + β e
2 − β e        γ γ γ γ 

0 = −A1 + β − A2 − β 0 = (A2 − s0) + β − A2 − β
2 2 2 2 

c) Plot of s(t) for the given values
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1.9(c) Plot of s(t) for t=0 to t=10
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γ
2A2β = s0

( 1
+ β

2

)
⇒ A2 = s0

γ

2β

( 1
+ β

2

)
⇒ A1 = s0

[
1− γ

2β

(
+ β

2

)]
s = s0

[
1

1−
2β

(γ
2

+ β
)]

e−(γ/2+β)t + s0
1

2β

(γ
2

+ β
)
e−(γ/2−β)t where β =

√
γ2

4
− ω2

0
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